
Nomadic Honeypots:

A Novel Concept for Smartphone Honeypots

Steffen Liebergeld1, Matthias Lange1, and Collin Mulliner2

1Security in Telecommunications, Technische Universität Berlin, {steffen,mlange}@sec.t-labs.tu-berlin.de
2Northeastern University, crm@ccs.neu.edu

Abstract—Intelligence on mobile threats is a valuable asset.
Honeypots showed to provide a good resource to gain threat
intelligence in other areas. Unfortunately, current malware
largely relies on social engineering to infect smartphones.
Recently, attacks against smartphones have shifted towards
local communication interfaces. These trends make traditional
honeypot concepts unsuitable. We propose a novel concept
called nomadic honeypot that provides an infrastructure to
enable mobile network operators to collect threat intelligence
directly on smartphones. We present a practical design that
confines the mobile operating system in a virtual machine.
Through virtualization all communication interfaces can be
monitored. The actual monitoring is carried out by a second
virtual machine running on the same device. This machine hosts
sensors and provides a secure backchannel for the operator.
Our nomadic honeypot is meant to be used by people. Thus it
has the capability to catch malware that is distributed through

app stores as well as future threats that attack the smartphone
using local communication such as NFC, Bluetooth, and QR
codes. We implemented a prototype that runs on an off the shelf
smartphone.

Keywords-smartphone, honeypot, malware, worms, threat in-
telligence, system virtualization

With rising popularity, smartphones become increasingly

attractive for malware. In fact, smartphone security–or the

lack thereof–has reached a level of publicity, where customers

are very conscious about it. With security becoming a selling

argument, being able to warn and protect customers becomes

a valuable asset for cellular operators.

Zhou et al. [12] found 93% of malware samples to employ

C&C channels, which makes them bots. Such botnets can be

very harmful to the core cellular network [11]. Therefore it is

in the interest of the operators to know about such threats in

order to be able to enact countermeasures.

In IP networks Honeypots have been successfully used to

collect threat information. However, the classical passive IP-

based Honeypot does not fit the infection vectors on smart-

phones. Most malware today is being installed by the user

himself, for example when he installs an infected App from

a black market. We also observed the first infections through

malicious Quick Response (QR) codes [1].

We observe that the smartphone and its user form a ”very

high interaction” honeypot. The key insight is that the user

is a part of the honeypot. The user involuntarily increases

the honeypot’s visibility, when he installs malware, scans

malicious QR codes, and interacts with malicious NFC devices

and RFID tags.

With this insight, we determined that the best place to

collect intelligence on current mobile threats is the device

itself. To this end, we introduce the concept of nomadic

honeypots.

Today about 37% [12] of Android malware contains root

exploits to elevate its privileges. If it succeeds all security

measures of the operating system (OS) become useless. Thus

we cannot host our solution in the mobile OS itself. Instead

we divide the device into two logical partitions. We move the

entire mobile OS into its own partition and remove its direct

access to the device’s communication hardware. In a second

partition we host the nomadic honeypot infrastructure. It has

four obligations: First it controls the communication interfaces

and mediates all communication of the mobile OS. Second it

hosts a wide range of sensors to collect and filter events on the

communication interfaces. Third it implements facilities for

snapshots and logging of the mobile OS. Fourth it establishes

a secure backchannel to communicate with the operator.

To show how nomadic honeypots can be constructed in

practice, we present a design that is based on a modern

microkernel. We implement the partitions with virtual

machines (VMs). We implemented a prototype that runs on

an off the shelf Samsung Galaxy S2 smartphone.

Our contributions are:

• Concept of nomadic honeypots We introduce nomadic

honeypots as an infrastructure to collect information on

threats directly on mobile devices.

• Practical design We present a practical design of

our nomadic honeypot. We employ virtualization to

confine the mobile OS and remove its direct access to

communication hardware. We mediate all communication

in a separate VM, where we deploy sensors which collect

information, and a secure backchannel.

This paper is structured as follows. We introduce the con-

cept of nomadic honeypots in Section I. Then we show how

a nomadic honeypot can be constructed in practice in Section

II. We show our prototype in Section III, and present ideas

for sensors in Section IV. Sections V and VI discuss the



ethical implications of nomadic honeypots and how operators

can deploy them. We conclude in Section VII.

I. CONCEPT OF A NOMADIC HONEYPOT

The nomadic honeypot is deployed directly on a smart-

phone. In our concept the user plays a key role, as he is

responsible for the visibility of our honeypot: He moves the

honeypot into interesting areas, scans malicious QR codes and

installs malicious applications. Ideally the nomadic honeypot

is the primary smartphone of the user that he uses on a

daily basis. We discuss an idea on how operators can make

people use nomadic honeypots in Section VI. Conceptually

the nomadic honeypot requires that the smartphone is logically

divided into two isolated partitions.

The main partition hosts the mobile OS, but has no direct

access to the device’s communication hardware. Malware often

includes checks if it is being run in an unusual environment

such as an emulator, and turns off its malicious payload to

escape detection. Therefore it is vital that the mobile OS is

modified as little as possible.

The second partition hosts the infrastructure for our nomadic

honeypot. It has four obligations: First, it mediates all com-

munication of the mobile OS. Second, it hosts infrastructure

for data collection (sensors). Third, it implements facilities

for snapshots and logging. And fourth, it provides a secure

backchannel for the operator.

Mediating all communication serves two purposes. First, it

allows for powerful sensors that can monitor the data stream

directly and no communication goes unnoticed. Second, it

allows us to confine malware and stop it from spreading.

Strict isolation between the partitions ensures that even

a subverted mobile OS cannot tamper with the nomadic

honeypot’s infrastructure. Therefore the operator can trust

in the information that is being collected by the nomadic

honeypot. Cryptographic keys that are needed to establish the

backchannel remain confidential, and an attacker cannot use

them to connect to the operator.

The operator can use the collected data to gain intelligence

on mobile threats. He can request snapshots of the mobile

OS’s file system to do an offline forensic analysis of attacks.

Thereby he can gain thorough insight on the nature of the

threats and use his findings to protect his customers. An illus-

tration of nomadic honeypots in action is given in Figure 1.

II. DESIGN OF A PRACTICAL NOMADIC HONEYPOT

In this section we show how a nomadic honeypot can

be constructed for today’s smartphone hardware. The most

prominent question is how to partition the device. ARM

TrustZone [10] implements partitioning in hardware. We want

to be able to deploy our nomadic honeypot to all smartphones.

Therefore TrustZone is not an option because it is not imple-

mented in all smartphones. Even if it is implemented, it is

usually not available because the OEM already deployed a

secure monitor that cannot be replaced. Instead we opt to do

virtualization on a microkernel. As shown by Lange et al. [7]

virtualization of mobile OSes like Android is possible even on

Operator

Malicious WiFI

Inform

In
fo

rm
W

arn

Warn

Smartphone infected with

Bluetooth worm
Nomadic Honeypots

Ordinary Smartphones

Figure 1. Illustration of nomadic honeypots at work. In this picture one
nomadic honeypot is connected to a malicious WiFi hotspot. Another one is
within reach of a smartphone that has been infected with a Bluetooth worm.
Both honeypots collect data about the threats and send this information to the
operator. The operator can use this information to protect his customers, for
example by updating blacklists of WiFi hotspots.

today’s smartphones. Mediating hardware access is possible

as well. This was shown by Mulliner et al. [8], who used

L4Android [2] for their signalling filter. Our design mandates

to boot the microkernel with secure boot to ensure its integrity.

An illustration of our setup is shown in Figure 2. It consists

of the following components:

Microkernel The microkernel is the only component run-

ning in the most privileged mode of the CPU. Its purpose

is to partition the device’s resources, and to ensure isolation.

The small code base of the microkernel allows for thorough

analysis of the its code. There even is a microkernel that has

been formally verified [6]. That is why we put trust in the

microkernel’s isolation capabilities and assume it cannot be

compromised.

Honeypot VM We run the mobile OS in its own VM,

which is configured such that it does not have direct access

to communication hardware. This allows us to mediate and

monitor all of its communication. As an additional benefit, it

allows us to contain a potential compromise of the mobile OS

as well. For our architecture the mobile OS kernel needs to be

modified. First, it needs to be virtualized. Second, its drivers

need to be made aware of the indirection of communication.

Both modifications are transparent to applications. The ques-

tion is if malware can detect that it is running in a nomadic

honeypot. The fact that the mobile OS has been virtualized

can be detected with timing analysis. Timing analysis is only

possible if the attacker knows the exact temporal behaviour

of the victim’s device hardware. If the nomadic honeypot is

deployed on a large variety of devices, an attacker would have

to know the characteristics of all devices that are being used.

If the malware succeeds to subvert the mobile OS kernel, it

can determine that the device drivers have been modified for

indirection. Even in this case the attacker needs to know the

original drivers to tell if they are modified. In summary it is

unlikely that malware authors go through the effort needed to

detect a nomadic honeypot.



Infrastructure VM We place the nomadic honeypot in-

frastructure inside a second VM. We call it the Infrastructure

VM. It runs a lightweight Linux environment. This allows

us to leverage the rich programming environment of Linux

for sensors, snapshots, logging and the backchannel. The

Infrastructure VM is allowed to control the communication

hardware directly. It presents the Honeypot VM with virtual

equivalents of the communication hardware as well as a virtual

file system.

In detail, the Infrastructure VM hosts the following facili-

ties.

Sensors Our system employs sensors to record events of in-

terest that are to be sent to the operator for threat intelligence.

A sensor sits in between the mobile OS and its respective

communication device. Thus it can tap into the communication

to detect events of interest and if needed stop outgoing attacks.

Sensors can also leverage the virtualization infrastructure to

directly get information from the Honeypot VM’s memory.

Sensors do filtering and possibly compression of information

to keep the amount of data being sent to the network in control.

When a sensor detects an event that is typical for an attack, it

can instruct other sensors to start collecting more data. This

increases the chances for a forensic analyst to have enough

data to analyze an attack. There are many potential sensors,

specifically any kind of IO device inside a smartphone is a

potential point for data collection. We provide more details

and ideas on sensors in the next section.

Facilities for snapshots and logging The Infrastructure

VM presents the Honeypot VM with a virtual file system.

The resident data of the Honeypot VM is entirely hosted

by the Infrastructure VM. This enables it to do snapshots,

which can help with attack forensics. We envision to have

a restore mechanism for the Honeypot VM as well. Our

design includes a mechanism that allows us to keep log

files for forensic analysis. It may even log events from the

virtualization layer, which could provide enough data for an

analyst to completely replay the Honeypot VM. We envision

that both log information and a snapshot are sent to the

operator on demand, so that he can do attack forensics offline.

Secure backchannel The secure backchannel is used for

communication with the operator. It directly communicates

using the device’s communication hardware, as shown in

Figure 2. To that end we establish a virtual private network

(VPN). The cryptographic key material for the VPN is hosted

entirely in the Infrastructure VM and is therefore inaccessible

to the mobile OS. The backchannel comprises a ringbuffer to

store information during the time when there is no network

connection available. As an added value, the operator can use

the backchannel to deploy countermeasures to new attacks.

For example he can distribute updated blacklists of malicious

WiFi hotspots.

III. PROTOTYPE

We implemented a prototype of our nomadic honeypot

architecture that runs on the Galaxy S2 smartphone. Our

prototype is based on the Fiasco.OC microkernel [3]. We

Hardware

Microkernel

Honeypot VM Infrastructure VM

Communication

Devices

SensorsVirtual Devices

Mobile OS

(ABI unmodified)

Applications

Backchannel

Figure 2. Simplified illustration of a practical nomadic honeypot. It consists
of the Honeypot VM running the mobile OS and its applications and an
Infrastructure VM. The Infrastructure VM mediates all communication of the
mobile OS, and employs sensors to collect threat intelligence. The collected
data is sent to the operator via a secure backchannel.

choose Android as the mobile OS because it is based on the

open source Linux kernel, which can be virtualized on non-

virtualizable CPUs such as the current ARM Cortex-A9. In

fact we leverage the L4Android project [2] as introduced by

Lange et al. [7].

The implementation proved to be very laborious because all

involved drivers need to be modified to be interposed. So far

we implemented device drivers for the cellular baseband, the

touchscreen and buttons, and the accelerometer. In our testing

the prototype showed performance and battery runtime that–

while being degraded compared to stock Android–is sufficient

for everyday use. This makes us confident, that our approach

can work in practice.

IV. SENSORS

Our nomadic honeypot’s purpose is to collect intelligence

on the smartphone. Its data collection facilities are the sensors.

We envision to employ sensors for the following devices:

NFC, Bluetooth, WiFi, input (touchscreen, buttons), GPS and

cameras. We will now give some examples on how our

infrastructure can help in collecting information about attacks.

App Store A lot of malware is distributed via centralized

app stores. Our nomadic honeypot can detect infections by

using virtual machine introspection to monitor the mobile OS,

e.g. to detect rooting or kernel compromise.

Bluetooth Bluetooth attacks can be caught with Bluetooth

honeypots like Bluebat [5] and Bluepot [9]. The problem of

these Bluetooth honeypots was that they were not deployed

on real mobile devices, and therefore they did not catch many

attacks. In our system, these honeypots can be deployed in

the Infrastructure VM without much modification. We believe

that this setup perfectly matches the attack vector of Bluetooth

worms and therefore has best chances of catching attacks.

WiFi Malicious WiFi hotspots do harm, for example with

modified DNS entries that direct unsuspecting users to phish-

ing sites. Once the user decides to join a public WiFi hotspot, a



sensor can probe it for malicious behaviour. Possible tests are

checks for unusual traceroutes or unexpected DNS resolution

of known URLs (e.g. those of banks).

SMS/MMS/Calls In addition to recording and monitoring

all incoming SMS and MMS, we can also employ intelligent

filters to block malicious premium SMS or SMS that subscribe

the user to expensive services before they are sent to the

network.

QR Codes QR codes are a widely used form of 2D bar-

codes. On scanning the QR code, a special application decodes

the barcode to reveal its content. Malicious QR codes contain

information to execute services such as dial bad telephone

numbers, send unintended SMS, execute USSD codes [4] or

access malicious URLs. All these malicious intents involve

communication, which goes through our Infrastructure VM

and its sensors and can therefore be detected.

Location For local attacks such as NFC, Bluetooth and

WiFi it is of interest where the attack happens. For this it

makes sense to record the phone’s current location together

with recorded attack events.

V. DISCUSSION: ETHICAL ISSUES

Our nomadic honeypot aims at being used by real people

on a daily basis. It will necessarily host the user’s private

information, including the address information and telephone

numbers of his peers, his emails, location, browser history and

more. In many countries there are strict privacy laws, which

have to be maintained. This can be tricky, especially when the

data is transmitted to the operator. A possible solution could be

certified anonymizing algorithms that can be deployed in the

sensors. However, for some information for example location

data, anonymization might not be possible at all.

It is in the nature of our honeypot that it is prone to be

attacked. If subverted, the device potentially becomes a threat

to other devices in that its malware will try to spread itself by

infecting them as well. In our architecture the compromised

smartphone OS does not have the capability to communicate

directly. Instead, the Infrastructure VM mediates all commu-

nication, which gives us the ability to stop malware directly

on the device, before it can harm other devices.

VI. DISCUSSION: DEPLOYMENT OF NOMADIC

HONEYPOTS

The nomadic honeypot is of use only when it is being

actively used by people on a daily basis. The question is how

can operators recruit people to use nomadic honeypots?

The nomadic honeypot has inherent usability drawbacks: It

has some computational overhead, which means the devices

will not be as fast as they could be and that the battery will

not last as long. Further, the honeypot has an inherent privacy

issue as discussed in the previous section.

We think the best way to make people use nomadic hon-

eypots is when the operator offers these devices to selected

users at a large discount (e.g. hand out these phones for free),

or with a data plan with little or no cost. The user would be

informed about what drawbacks nomadic honeypots have in

terms of usability and privacy compared to the other (more

costly) smartphones and data plans. The user must agree to

have understood the terms of use.

VII. CONCLUSION

In this work we introduced a concept for nomadic honey-

pots. We described a practical design to show how our concept

can be implemented in practice, and implemented a prototype.

We presented ideas for sensors for the most prominent mobile

attack vectors, such as malware, SMS/MMS, Bluetooth, NFC

and QR codes. Finally we elaborated on ethical issues and

how nomadic honeypots could be deployed.

VIII. ACKNOWLEDGEMENTS

We would like to thank Adam Lackorzynski, Alexander

Warg, Jean Wolter, Christian Ludwig, Michael Voigt, Janis

Danisevskis and Jan Nordholz for their help in creating our

prototype and Ravishankar Borgaonkar for proof-reading.

This work was partially supported by the EU FP7/20072013

(FP7ICT2011.1.4 Trustworthy ICT), under grant agreement

no. 317888 (project NEMESYS).

REFERENCES

[1] That square QR barcode on the poster? Check it’s not a sticker. http://ww
w.theregister.co.uk/2012/12/10/qr code sticker scam/, December 2012.

[2] L4Android: Android on top of L4. http://www.l4android.org, February
2013.

[3] The Fiasco microkernel. http://os.inf.tu-dresden.de/fiasco/, January
2013.

[4] R. Borgaonkar. Dirty use of USSD codes in cellular networks.
https://www.troopers.de/wp-content/uploads/2012/12/TROOPERS13-D
irty use of USSD codes in cellular-Ravi Borgaonkor.pdf, March
2013.

[5] A. Galante, A. Kokos, and S. Zanero. Bluebat: towards practical
bluetooth honeypots. In Proceedings of the 2009 IEEE international

conference on Communications, ICC’09, pages 920–925, Piscataway,
NJ, USA, 2009. IEEE Press.

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an OS kernel.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating

systems principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM.

[7] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter.
L4android: a generic operating system framework for secure smart-
phones. In Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, SPSM ’11, pages 39–50,
New York, NY, USA, 2011. ACM.

[8] C. Mulliner, S. Liebergeld, M. Lange, and J.-P. Seifert. Taming Mr
Hayes: Mitigating Signaling Based Attacks on Smartphones. In Pro-

ceedings of the IEEE/IFIP 41st International Conference on Dependable

Systems Networks (DSN), Boston, MA, June 2012.
[9] A. Smith. Bluepot: Bluetooth Honeypot. http://code.google.com/p/blu

epot/, February 2013.
[10] T. Alves and D. Felton. TrustZone: Integrated hardware and software

security. Technical report, ARM Limited, 2004.
[11] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and

T. La Porta. On cellular botnets: measuring the impact of malicious
devices on a cellular network core. In Proceedings of the 16th ACM

conference on Computer and communications security, CCS ’09, pages
223–234, New York, NY, USA, 2009. ACM.

[12] Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 95 –109, may 2012.


