Runtime Integrity Checking for Exploit Mitigation on
Lightweight Embedded Devices

Matthias Neugschwandtner!-2, Collin Mulliner?, William Robertson?, and Engin
Kirda2"

1 IBM Research Zurich, Switzerland
2 Northeastern University, Boston

Abstract. Entering the age of the Internet of things, embedded devices are ev-
erywhere. They are built using common hardware such as RISC-based ARM and
MIPS platforms, and lightweight open software components. Because of their
limited resources, such systems often lack the protection mechanisms that have
been introduced to the desktop and server world. In this paper, we present BIN-
tegrity, a novel approach for exploit mitigation that is specifically tailored towards
embedded systems that are based on the common RISC architecture. BINtegrity
leverages architectural features of RISC CPUs to extract a combination of static
and dynamic properties relevant to OS service requests from executables, and
enforces them during runtime. Our technique borrows ideas from several areas
including system call monitoring, static analysis, and code emulation, and com-
bines them in a low-overhead fashion directly in the operating system kernel. We
implemented BINtegrity for the Linux operating system. BINtegrity is practical,
and restricts the ability of attackers to exploit generic memory corruption vulner-
abilities in COTS binaries. In contrast to other approaches, BINtegrity does not
require access to source code, binary modification, or application specific con-
figuration such as policies. Our evaluation demonstrates that BINtegrity incurs a
very low overhead — only 2%, — and shows that our approach mitigates both code
injection and code reuse attacks.

1 Introduction

Modern embedded devices are built using common hardware such as RISC-based ARM
and MIPS platforms and open software components such as Linux. Thanks to their rel-
atively high spread, constant uptime and common components, embedded devices have
become an attractive target for attackers. Routers, in particular, have been regularly
abused as hosts for botnets in the past years [3,18,19]. Similar to traditional desktop
and server environments, embedded systems are attacked mostly through exploitation
of software vulnerabilities such as memory corruptions.

Memory corruption vulnerabilities and attacks that exploit them remain one of the
major issues in computer security [17,22]. There is an ongoing arms race as defend-
ers build new mitigations, and attackers discover ways to bypass these defenses. For
example, Data Execution Prevention (DEP) was created to defend against code injec-
tion attacks. However, attack techniques such as generic code reuse (e.g., return-to-libc)

* Thanks to Secure Business Austria

and return-oriented-programming (ROP) were then developed that allowed attacks to be
launched without the need to inject code. As a remedy for code reuse attacks, Address
Space Layout Randomization (ASLR) was proposed. However, ASLR can also be by-
passed if the attacker can leak addresses from a target process. Recent work [4,13] started
using hardware features to mitigate ROP attacks on desktop computers and servers run-
ning on the x86 platform.

Note that previous advancements on exploit mitigation focused mainly on desktop
computers and servers, and have neglected securing embedded devices against software
vulnerabilities. There is even a gap within the embedded systems world where CPUs for
high-end applications contain security features such as DEP while the (cheaper and more
common) low-end versions do not and thus leave the majority of embedded devices
vulnerable to even simple attacks that have been eradicated in the desktop and server
world.

This paper presents, BINtegrity, a practical, low-overhead system to mitigate mem-
ory corruption attacks that is specifically tailored towards embedded systems. Our ap-
proach aims to protect against state of the art attacks while still being practical. We
specifically target platforms based on RISC architectures and systems where we only
have access to program binaries.

The fundamental insight we gained from looking at previous work (Section 2) is
the need to combine multiple techniques and aspects in a novel way to practically mit-
igate exploitation attempts. BINtegrity ensures that system calls are only invoked in a
legitimate way by checking the runtime integrity of a program. Integrity means that the
runtime state of a program has to be coherent with its binary executable. Coherence is
given if the following conditions are met: 7) the invoked system call is actually used by
the binary ii) the system call arguments match the ones specified in the binary iii) the
observed call chain is reflected by the binary.

Our approach (Section 4 and 5) leverages several common design features found on
all RISC CPUs to reconstruct part of the call chain and extract properties from a binary
executable in an efficient way. To the best of our knowledge, we are the first to leverage
these fundamental architectural features of RISC CPUs to build a security system. Our
method is lightweight and allows our system to execute all operations at runtime.

BINtegrity is designed to be transparent to legacy binary code and works for arbi-
trary programs without requiring access to source code, prior training phases, or binary
modifications. Note that previous approaches (e.g., intrusion detection based on system
call monitoring and full control flow integrity) do not offer similar flexibility and are,
thus, not practical for embedded systems. The only requirement for our approach is the
presence of a kernel-based runtime component that — on-demand — extracts properties
directly from program binaries and checks them against runtime behavior. Our tech-
nique guarantees that only system calls that are actually used by a program can ever be
invoked by a corresponding process. BINtegrity enforces strong restrictions on zow sys-
tem calls can be invoked. When combined, these two features significantly reduce the
attack surface available to code reuse attacks, and vastly limit the options for successful
code injection attacks.

We built a prototype implementation (Section 6) of BINtegrity as an extension to
the Linux operating system for the ARM and MIPS architectures and evaluated it on

two common and popular off-the-shelf devices: a MIPS-based router, and an ARM-
based smartphone. Our evaluation (Section 7) demonstrates that BINtegrity effectively
mitigates code injection and code reuse attacks while incurring an extremely low per-
formance overhead of only 2%.

The paper makes the following contributions:

— We present a new practical method to efficiently extract and leverage process run-
time information on RISC architectures. The extracted information is used to create
and check properties against the program’s binary file on disk.

— We propose a lightweight technique for restricting memory corruption attacks for
COTS binary programs. Our system is the first to specifically target the RISC ar-
chitecture leveraging some of its unique features.

— We developed a prototype implementation of this technique called BINtegrity as an
extension to the Linux operating system for the ARM and MIPS architectures. The
source code of BINtegrity is publicly available at www.bintegrity.org.

— We evaluated BINtegrity on two real-world systems, and show that our technique
effectively defends against code injection and reuse attacks. We also show that it
incurs a low performance overhead and, therefore, represents a practical, generic
defense for embedded systems.

2 State of the Art

Mitigation of memory corruption attacks is a well-studied problem in literature. A wide
range of approaches tackle the problem from various angles and at different stages dur-
ing exploitation. Since preventing memory corruption in the first place is fairly difficult,
most approaches focus on hindering an attacker in successful exploitation of a memory
corruption vulnerability. After having corrupted the memory, the exploit has to redirect
the control flow to either plain shellcode or a series of ROP gadgets. Basic defenses
try to prevent shellcode injection or finding the desired code in memory while more
advanced techniques such as Control Flow Integrity (CFI) aim at preventing malicious
control flow redirection. Finally, an exploit has to invoke system calls to use function-
ality beyond pure computation. This fact led to a large body of research in the area of
system call monitoring to detect malicious system calls.

Basic Defenses Data execution prevention (DEP) [2], prohibits instruction fetch from
data-only memory regions. While DEP proved to be an effective mitigation of straight-
forward code injection exploits, it relies on hardware support that is not necessarily
available on embedded devices, depriving them of the benefits of this basic defense
technique. Address space layout randomization (ASLR) places the text segments of a
process at random memory locations. This probabilistic technique hinders the attacker
in determining target addresses for code reuse attacks. The drawback of this technique is
that unless the executable itself is compiled as a so-called PIE, randomization is limited
to the dynamically linked libraries. In addition, the effectiveness of ASLR is limited
on 32bit platforms. Current deployments of ASLR also only perform randomization at
program startup, which makes it less effective with long-running applications.

www.bintegrity.org

Mitigating Code Pointer Corruption Code-Pointer Integrity [11] hides code pointers
from being accessed by an attacker by storing them in a “safe”, inaccessible memory
region. While CPS, a relaxed variant of their solution, has relatively low overhead, it
requires access to source code and is ineffective against attacks that do not require code
pointer modifications [15].

Control Flow Integrity The property of CFI [1] describes whether a program’s execu-
tion flow has deviated from its intended path. Provided that it can be both measured
and enforced to full extent, attacks based on control flow hijacking could be completely
prevented. The problem with CFI is that solutions that can operate on binaries [25] have
been shown to be too coarse grained to be effective [8]. Recent approaches use context-
sensitive CFGs for higher precision [21], but achieve low-performance overhead only
by relying on hardware features currently not present on embedded devices [6].

System Call Monitoring and Policy Enforcement Early approaches on exploit mitiga-
tion entirely focused on the inspection of system call properties. Starting from writing
policies for system call execution [14,20,23], these approaches eventually evolved to
full-fledged mandatory access control systems such as SELinux® or AppArmor* that
require a corresponding configuration effort.

A different line of work tries to detect anomalous system calls that would deviate
from normal program behavior [10,7]. These systems rely on a runtime learning phase to
model normal behavior. However, mimicry attacks [24] that hide their malicious system
calls in a valid sequence or change the parameters to system calls have soon shown the
limitations of such approaches. Recent work [16] claims to be resilient against mimicry
attacks by working on extremely long execution paths.

3 Threat Model

Our threat model covers memory corruption exploits such as buffer overflows on binary
programs running on the device. We assume that the attacker has access to the target
application, and that she can launch local or remote attacks against it. We note that in
order to have an effect on the system, the attack code has to request operating system
services at some point, i.e. perform a system call. Without being able to perform a system
call, its possibilities are limited to pure computational tasks while operations like file or
network 1/0 as well as process control are impossible.

In summary, we assume that:

— The operating system kernel and the underlying hardware are trusted, and have not
been compromised by the attacker.

— The application binary on disk is trusted, and cannot be modified by the attacker.
We assume the same holds true for the shared libraries used by the application.

— The process memory is untrusted, since the attacks we mitigate are based on mem-
ory corruption. We assume that the attacker might be able to execute a limited num-
ber of instructions without being detected. Also, we assume that the attacker has the
ability to modify and overwrite arbitrary memory locations, including regions that
contain executable code.

3 SELinux http://www.selinuxproject.org
* AppArmor http://apparmor.net

http://www.selinuxproject.org
http://apparmor.net

Based on our threat model, an attacker can manipulate the control flow of a process to
the attacker’s benefit through targeted memory manipulation. We do not cover memory
corruption attacks that only change program data (e.g. file names in a write operation)
and do not redirect control flow. This allows for two classes of attacks: code injection
and code reuse. In case of code injection, the attacker introduces completely new code
into memory and redirects control flow to it. Code reuse attacks on the other hand lever-
age code already existing in a process. They can operate at different levels of granularity,
either targeting whole library functions (commonly referred to as “return-to-library”) or
small code chunks of the program that are stitched together (i.e., “gadgets”).

4 Approach

Our goal is to create a practical, efficient and effective defense to mitigate exploitation
of memory corruption attacks on RISC platforms for embedded systems.

We designed BINtegrity around the fact that code that has an effect on the system
does so by making use of the operating system through system calls. The same principle
is true for exploits. Hence, our approach is centered around system calls. Whenever a
system call is invoked, we ensure that this is done in a legitimate way by checking the
integrity of a program’s runtime state. To this end, we extract several properties from
the program’s executable on disk that are relevant to the system call invocation at hand.
We then compare these properties with the actual runtime state. In case the comparison
succeeds, the program is allowed to perform the system call. Figure 1 shows a high-level
overview of this process.

binary Fig. 1: A high-level overview of our approach.
executable file _ BINtegrity intercepts system calls and inspects
BiNiagay remel both the runtime state and the binary executable

OSservice | jmage of a process. In case it detects a mis-
match, the process is terminated.

launch
program

system call

runtime process

The properties used in the comparison are extracted from the corresponding binary
executable. Based on the origin of the last two items in the call stack before the system
call invocation, we first check the existence of corresponding control flow instructions
at the respective locations in the binary. We proceed by evaluating the targets of these
control flow instructions and ensure that they match the call chain. As a next step, we
compare the arguments of the system call with the instructions in the binary that precede
the invocation and ensure that they do not contradict the actual arguments. Finally, we
evaluate the import tables of the executables corresponding to the call stack, and ensure
that all required import-export dependencies are indeed met. In case the runtime state’s
integrity has been violated, i.e. a mismatch is detected, the program is terminated.

The integrity checks based on these properties can effectively mitigate code injec-
tion and reuse exploits. To begin with, system call requests coming from injected code
are predestined to originate from an unusual code location. Mitigating such attacks by
checking code origins forces attacks to be constructed using only code reuse methods
such as return-oriented-programming (ROP). In theory return-oriented programs are
Turing-complete, but real-world ROP-based exploits are harder to construct since they

require a significant higher skill level and more time. An attack that reuses existing code
naturally comes from the right origin, but will have to differ in its control flow and func-
tion arguments to use system calls in a way that deviates from their regular invocation.
By enforcing properties of the original code, BINtegrity restricts this most important
step of code reuse attacks, thus effectively mitigating code reuse attacks.

For our design, we leverage common properties of RISC architectures. Specifically,
we leverage the fixed-length instruction set to implement static analysis and code emu-
lation in a very efficient way. Further, we utilize registers that are used during control
flow transfer to efficiently construct a program’s call chain. In contrast to related work,
we do not rely on hardware features specific to certain processor families [13,4,26].

BINtegrity is transparent to existing applications, and can handle arbitrary binary
programs. As a consequence, it does neither require access to source code nor binary
instrumentation or any other pre-analysis stage. Finally, the on-demand fashion of BIN-
tegrity ensures that it only causes overhead whenever a system call is actually invoked,
making it applicable to existing device and software configurations.

Looking from a different angle, our approach provides functionality similar to policy
enforcement systems such as SELinux and AppArmor. In contrast, though, BINtegrity
provides this functionality implicitly as it does not require any policy configuration —
restrictions are automatically derived from the binary.

5 Ensuring Runtime Integrity

In this section, we present how we check and enforce adherence of a program’s runtime
execution to its executable image with respect to system calls. The technique executes
completely at runtime as a kernel extension for arbitrary program binaries on any RISC
architecture that supports the equivalent of a link register. Ensuring the integrity com-
prises four steps: i) identification of a trusted application code base; ii) extraction of
the runtime state at the time of a system call invocation; iii) invariant extraction from
the original executable image given the runtime state; and, iv) invariant enforcement to
ensure integrity. Figure 2 depicts an overview of this technique. In the following, we
describe each of its components.

Fig.2: Diagram depicting a high-level

Binary Runtime State overview of ensuring runtime integrity. The
Library 1..N . key 1dea-1s to enforce secprlty restrlct19ns
by matching a process’ runtime state against

\ / invariants extracted from both the runtime state

Invariant Extraction and facts from the corresponding executable
image.

Match + Enforce

5.1 Trusted Application Code Base

The first requirement to ensure runtime integrity is to define a trusted application code
base (TACB). This TACB refers to the program text of an application to be protected.
The TACB is defined when a process is created by first allowing the runtime linker

(e.g., Id.so on Linux) to load the executable image and any shared libraries it depends
on into the process address space. At the point when control is transferred to the program
itself, all mapped memory segments marked as executable — i.e., program text from the
executable image and shared libraries — is taken as comprising the TACB.

5.2 Process Runtime State Extraction

Once a TACB has been established, the main part of the technique occurs at the time a
system call is invoked. When a program invokes a system call and control transfers to
the kernel, a runtime state is extracted from the process. This runtime state consists of
the following information:

— The return address of the system call, which points to the successor instruction of
the program call site. We denote it as retsc.

— The link address, which refers to the value that is stored in the LR (ARM) or RA
(MIPS) register. This points to the successor instruction of the enclosing procedure
call site before the system call invocation. We denoted it as ret;,..

— The register that contains the system call number.

— All registers containing system call arguments.

— On MIPS, the jump target register.

Taken together, this state provides full information about the system call that is to
be performed, its arguments, and a call chain of depth 2 in the program.

5.3 Invariant Extraction

Given a state, the next step of the technique is to extract invariants. These invariants are
recovered by performing a lightweight static analysis of the program code referenced by
the return and link addresses. We distinguish between two classes of actions performed
during this procedure: i) code invariant extraction refers to analysis of the executed
instructions leading to the invocation of the system call, while ii) symbol invariant ex-
traction refers to resolution of the symbols for the last two entries in the program call
chain.

Code Invariant Extraction To derive control flow information and invariants, code in-
variant extraction uses a combination of static analysis and lightweight execution emula-
tion. First, BINtegrity performs backwards disassembly from the offsets into the binary
given by ret(.). Disassembly continues until either a control flow transfer instruction or
a function prologue is found for the enclosing function F'(ret .y). Starting from the point
where backwards disassembly has stopped, BINtegrity emulates instruction execution.
As an execution state, we use a lightweight abstraction consisting solely of registers.
We note that on RISC architectures that traditionally provide a large number of reg-
isters, we did not find the lack of a memory abstraction to impair the effectiveness of
this approach. Focusing on registers also limits the number of instructions that must be
supported. Once the execution reaches ret(.), the current emulation state is collected;
concrete values in this state are taken as state invariants. We also add the kind of con-
trol flow instruction that precedes ret .y, and attempt to derive its target in case it is an
indirect call.

Symbol Invariant Extraction Every program that uses an external library function needs
some means to refer to that function. Executables refer to the functions they offer or
use by means of symbols S(F') encoded as simple character strings. The set of required
functions are referred to as imports I M (E) of an executable F, while the set of available
functions are the exports EX (E). After loading the executable objects into memory,
the linker matches all exports against the imports and resolves the symbols to actual
addresses. Symbol invariant extraction resolves the symbol S(F'(ret(.y)) in the binary
executable associated with ret .y and looks up whether it is exported or imported by this
binary. It then adds this information to the set of collected invariants.

5.4 Invariant Enforcement

Given the extracted runtime state and collected invariants, the final step is to check the
collected invariants against the state. That is, the approach checks for contradictions that
indicate violation of a safety condition. In particular, the technique checks the following
properties:

1. Code provenance

2. Call chain integrity

3. System call argument integrity
4. Symbol integrity

For a runtime state to be accepted as safe, all of these properties need to be verified
successfully. In the following, we describe each of them in detail.

Code Provenance Code provenance enforces that only code from the TACB invokes
system calls or their wrappers. Checks against the TACB are straightforward: both the
system call return address as well as the link address have to point to code contained
in the TACB to succeed — i.e., rets. € TACB A rety,. € TACB. The link address
will either point to a location in the application binary, or to a location in one of the
libraries that are used by the application. TACB checks are fast, as they do not require
examination of the binary.

Call Chain Integrity To check call chain integrity on ret,., we verify whether the pre-
ceding instruction Pred(rets.) is indeed an instruction that invokes a system call. Fig-
ure 3a shows the system call wrapper for the write system call, with the system call
return address pointing to et .. In addition, we compare the system call number that is
stored in a dedicated register of the state to check whether the correct system call han-
dler has been invoked. For call chain integrity on ret;,., we check that Pred(ret;,.) is
a branch instruction to begin with. Depending on whether the emulation step provides
us with the target of the branch, we also ensure that only the corresponding function
F(rets.) is called by Pred(ret;,). In Figure 3b this corresponds to the bl instruction
calling the wrapper for write.

Argument Integrity Argument integrity enforces that the parameters of a system call in-
vocation from the runtime state matches the results of the emulation. Of course, this can
only be enforced if invariants are recovered for those registers — that is, an assignment
derived from a constant value must have been observed during emulation. A further re-
quirement for performing this match is that the parameters are not changed by a system
call wrapper F(rets.). Section 5.5 describes argument integrity in more detail.

Symbol Integrity Symbol checks against the mapping established by the import and ex-
port tables of the code in the TACB prevent unauthorized use of functions. The intuition
is that if a return address ret .y falls into the address range of an exported function of
an executable, the symbol of the function has to be imported by some other executable.
More formally, given a call stack of depth k with return addresses rety, rety_1, ...,
two consecutive return addresses that point to different executables have to be linked by
their exports, respectively imports.

Tetk_j e E,N
(1) retp—j—1 € EyN p = S(F(rety—;)) €
E, 7é Ey

EX(E,)
IM(Ey)

Furthermore, if ret;_; is known and S(F'(ret,—;) is exported, but ret;_;_; is un-
known, S(F'(ret;_;)) has to be imported by an executable that is not £,.

) S(F(rety—;)) € EX(E,) = S(F(rety—;)) € IM(z),x # E,

The runtime state provides us with ret,. and ret;,., which are equivalent to the last
two entries in the call chain before the system call invocations, rety and ret;_;. In the
typical case, ret;, will point to a system call wrapper in a library E,, which is imported
by and called from the main program executable Ey, with ret;_1 € Ejy. This allows us
to enforce a strong match between two executables F, and Ej, based on Eq. 1. If this
implication holds, we continue with inspecting ret;,.. If it points to the main executable,
there is nothing more to check. However, E;, might also be yet another library that
provides some higher-level functionality. In case F'(ret;,.) is exported as well, we can
check it against the imports of all other mapped executables based on Eq. 2. In theory this
could be an issue if F'(ret;,) is both exported and used internally by Ey, but not imported
by any other executable. However, we did not encounter such a case in practice.

5.5 Function Call Arguments

A critical component of the execution emulation is deriving invariants on system call
arguments. The specific idea is based on the observation that parameters to system calls
are often composed of both static and dynamic values. Dynamic values are often mem-
ory addresses, while static values often specify length values and flags. By extracting
statically assigned arguments from the application binary and comparing them against
observed values, it is possible to infer whether execution actually proceeded along the
expected path through the binary to the system call invocation.

Figure 3 shows the instructions that are involved in a call to write. Figure 3a shows
the system call wrapper in the libc (bionic) and Figure 3b shows a call to write carried
out in the application binary. The write system call takes three arguments. In our ex-
ample, the first and third arguments are assigned statically, while the second argument
is based on the content of another register. The second argument of write points to a
buffer that holds the data that is to be written, while the first and third argument are a file
descriptor (in this case, standard out) and the number of bytes that should be written.

During execution emulation we record static values for the first and third function
argument because they were specified as constants in the executable image. These then

10

become invariants that can be checked when that particular system call at that location
in the executable is invoked. As a result no code reuse attack could abuse this write
call to modify an arbitrary file. The second argument is marked as do-not-compare, as
its value cannot be determined.

:5;;9: (Ra,R7) MOV R2, #4 static assignment
4 ! ' ADD R1, PC, RL

MOV R7, #4 static assignment MOV RO, #1 static assignment

svc instruction present BL write@plt instruction present

POP {R4,R7} CMP RO, #0

MOVS RO, RO ..

BXPL LR

(a) System call wrapper for the write sys- (b) Call to write in the application binary.
tem call. From BINtegrity’s point of view, From BINtegrity’s point of view, the link
the system call return address points to the return address points to the successor of the
successor of the system call instruction. ~ procedure call instruction.

Fig. 3: Example of critical code regions that are analyzed at runtime by our system.

Some system call wrappers perform more operations besides invoking the system
call. If these additional operations include modifications of arguments passed from the
application to the system call, our argument integrity check would fail. Our system takes
this behavior into account, and analyzes the instructions preceding the system call in-
struction to determine if argument registers are modified. One example of a system call
wrapper that modifies arguments before invoking the actual system call is the wrapper
for open6é4 in uClibc compiled for MIPS. This wrapper modifies the second argument
before invoking the system call by applying a bitmask to the second argument. In this
case, our static analysis concludes that the second argument cannot be matched against
the runtime state even if we are able to determine a statically assigned value in the ap-
plication binary. The information about what arguments are modified by a system call
wrapper is stored as part of the execution emulation procedure.

5.6 Dynamic Code Loading

While the TACB often does not change during execution, some processes do make use
of interfaces like dlopen to dynamically load code. For this interface, an application
can call dlopen to load a library, d1sym to resolve a function exported by that library,
and invoke that function as any other. Internally, d1open uses mmap and a small number
of other system calls to load the library code into memory. BINtegrity handles dynamic
code loading by tracking uses of mmap. Each time mmap is invoked by a process, our tech-
nique checks whether dlopen was called prior to calling mmap. This check is possible
because of the invariant extraction mechanism we described above. If it is determined
that mmap was executed on behalf of the dlopen function, the dynamically loaded li-
brary is added to the TACB.

6 The BINtegrity System

In this section, we present the BINtegrity prototype implementation, which is publicly
available at www.bintegrity.org. BINtegrity is written as an extension to the Linux
kernel, and is activated every time a process invokes a system call. The rationale be-

www.bintegrity.org

11

Process By Fig. 4: Overview of the BINtegrity system.

=

A

Emulation Engine
TACB

Invariant
ELF parser | Disassembler | Emulator Cache

v

’ Integrity Enforcer ‘

BINtegrity Kernel Module

hind this approach is that a program must always resort to services offered by the kernel
to perform security critical actions such as file and network 1/O, or to spawn new pro-
cesses. Therefore, the system call boundary is an ideal location to collect process state
information, and to enforce security policies.

6.1 Implementation

We developed BINtegrity as a loadable kernel module that is compatible with the Linux
3.x series. Since BINtegrity’s operation has to be completely transparent to user mode
programs, we do not introduce new techniques or modify existing ways to interact with
the kernel. With support for different architectures in mind, we kept platform-specific
code at a necessary minimum. That is, only components that require assembly-level
support are platform-specific, and are easily ported to new architecture. Figure 4 shows
an overview of BINtegrity’s design, which is composed of the following.

Emulation Engine The emulation engine contains all components that extract invariants
from the program’s runtime state and executable image on disk. This includes a parser
for ELF files to infer symbol information, as well as a disassembler and instruction
emulator for both the ARM and MIPS instruction set.

TACB and Invariant Cache The per-process information BINtegrity maintains consists
of the TACB and the invariant cache. The TACB keeps track of a process’ memory
pages that contain executable code, and serves as a reference when mapping addresses
to binary files on the disk. The process of invariant extraction includes file parsing, dis-
assembly, and instruction emulation — all relatively expensive operations. Therefore, we
added a caching mechanism to our system that stores extracted invariants, thus limiting
the number of actual extraction operations executed per process.

Integrity Enforcer The integrity enforcer performs invariant checks and acts upon their
result. It is a lightweight component, as it is the most frequently invoked part of BIN-
tegrity. After checking code provenance, this component queries the invariant cache. If
it does not contain the invariants for the current state, it invokes the emulation engine
to produce them. Subsequently, the invariant checks are performed. In case any of them
fail, the process is terminated.

System Call Interposition System call interposition has been implemented as detour
trampolines that invoke BINtegrity’s main functionality before the system call handler is

12

executed. BINtegrity intercepts execution immediately after the kernel’s dispatcher has
performed basic context-switch duties. As soon as all checks have passed successfully,
the execution of the system call handler routine commences as usual. In case one of the
checks fails, the task that issued the system call is terminated.

Disassembler and Emulator The disassemblers in BINtegrity operate in a linear sweep
fashion. They support the instruction sets of the MIPS32 and ARM architectures, in-
cluding the Thumb and Thumb?2 instruction sets. The instruction set supported by the
code emulator is reduced to the subset that operates on registers and immediate values.

6.2 Integrity Checking Levels

In order to improve performance, BINtegrity only interposes on a subset of the system
call interface. Some system calls are invoked more frequently and thus more sensitive
to enforcement overhead. Furthermore, system calls such as write are used by virtually
every program and therefore do not require symbol checks. In contrast, system calls such
as execve are rarely called and thus heavyweight checking can be performed without
an observable performance impact.

BINtegrity therefore implements three distinct integrity checking levels, with each
level adding additional checks to the previous level. The lowest checking level is the
TACB check. Here, we only perform code provenance checks for the return address
and link address using our TACB. The second checking level adds the checks for call
chain integrity as well as system call argument integrity. The third checking level adds
symbol checking. Naturally, the checking level directly affects which invariants need to
be extracted. For instance, if symbol checking is not enabled, less extensive file parsing
has to be performed.

In our prototype, we selected 33 security critical system calls that are used by BIN-
tegrity. Of these 33 system calls, we configured 11 for checking level 2, and 22 for
checking level 3. Checking level 1 is not used by itself. The list of system calls we per-
form checks on are listed in Table 2. We note that assigning checking levels to system
calls is the only configuration our systems needs.

6.3 Invariant Caching

Emulated execution requires a considerable effort: reading files from the disk, parsing
ELF information, disassembling machine code, and actually emulating execution. These
operations would incur a severe performance overhead if they were executed for every
system call invocation. Therefore, we implemented a caching mechanism that stores
extracted invariants such that they can be reused in an efficient way during enforcement.

In particular, invariants are cached for the refurn address and link address individ-
ually. Splitting up the caching improves memory efficiency as system call wrappers
are likely called from many program locations, while the system calls themselves are
usually only invoked from a comparably small number of locations.

7 Evaluation

In this section, we evaluate the security characteristics and performance of BINtegrity.
For the performance, we both take a look at BINtegrity’s internal workings as well as
application-level benchmarks.

13

7.1 Security Evaluation

In the following, we describe why BINtegrity effectively defends against both code
injection and code reuse attacks.

Code Injection BINtegrity mitigates code injection attacks with early steps in the en-
forcement process. Code provenance checks of return and link addresses against the
TACB prevent attackers from invoking system calls or their library wrappers from un-
trusted memory regions. Call chain integrity checking prevents the attacker from invok-
ing system calls or library wrappers from memory areas that contain the application and
library binary code, but have been overwritten with other code.

Code Reuse BINtegrity restricts the capabilities of code reuse attacks from different
angles. Call chain integrity checking defends against abusing indirect jump targets to
invoke library wrappers. System call argument integrity checking prevents the attacker
from manipulating arguments of code that invokes library wrappers with static function
arguments. Symbol integrity checking prevents calls to library functions that are not used
by the application binary itself.

Table 1 shows an overview of the attacks covered by BINtegrity compared to other
defense mechanisms. While we do not prevent code reuse, we greatly limit code reuse
attack capabilities to resort to library functions or system calls. In summary, we provide
a more fine grained protection against code injection than both DEP (which relies on
hardware features not available on many RISC platforms) as well as approaches that
strictly enforce write-or-executable memory pages such as grsecurity’. In addition, we
provide a restricted form of control flow integrity at the system call boundary without
the need for recompilation of the source code or rewriting the binary, and can achieve
this with less performance overhead.

Attack DEP ASLR LBR CFI BINtegrity Table 1: Attacks handled by various protec-
tion mechanisms. DS = data segment only, L =

library only, G = gadget only

Injection v'(DS) v v
Reuse V(L) v(G) v)

Case Studies OSVDB-86824 describes a buffer overflow vulnerability on the D-Link
DIR-605L router. The router’s web server that handles login data processes user-supplied
POST data without sufficient checks. Hence, remote exploitation is possible, leading to
full system compromise as the web server runs with root privileges. Proof-of-concept
exploits [5] inject shellcode on the stack that spawns a remote shell. BINtegrity’s code
provenance checks detect and prohibit such behavior.

As another example, the recent CVE-2013-4659 describes multiple buffer overflow
vulnerabilities on the ASUS RT-AC66U router. In particular, the ACSD service’s com-
mand processing routine is vulnerable and, again, can be used to completely compro-
mise the router as the service runs with root privileges. Advanced proof-of-concept ex-
ploits [9] use code reuse techniques to first flush the data cache and subsequently invoke

> GRsecurity http://grsecurity.net

http://grsecurity.net

14

the system function in libc. As the latter function is not imported by the ACSD service
binary, BINtegrity’s symbol integrity enforcement effectively prevents this attack.

7.2 Performance

To evaluate BINtegrity’s performance, we deployed it on a Samsung Galaxy Nexus
(ARM) running Android and a Buffalo WZR-HP-G450H (MIPS) running OpenWRT.
All results were obtained using the software (i.e., libraries and programs) as it was de-
ployed on these systems. Table 2 lists all security-critical system calls with the integrity
checking level that we used during the evaluation. For some less critical and frequently
invoked system calls, we chose to only check for code integrity.

Checking Level System Calls

Code integrity creat, write(v), fork, sendfile, unlink, open, send, sendmsg, sendto

Code + Symbol in- execve, mmap, mprotect, ioctl, connect, socket, delete_ module,

tegrity init__module, symlink, chmod, chown, kill, reboot, accept, dup, pipe,
socketpair, socketcall, ipc

Table 2: Integrity checking levels used for the evaluation of BINtegrity.

We first provide an insight into the cost of BINtegrity’s internal operations before
we evaluate BINtegrity’s impact on these systems using benchmarks.

Internal Operation The evaluation of BINtegrity’s internal operation, specifically the
invariant extraction, is based on both micro-benchmarks and real-world scenarios. For
the micro-benchmark, we used Imbench’s [12] system call latency measurement on the
WZR-HP-G450H for the write system call. For the real-world scenarios, we picked
two typical applications, a web server and a web browser, each running on a different
system that is protected by BINtegrity. We had BINtegrity collect statistical data for
each process running in the system. During a two-minute evaluation time period, the
web server received two requests on a page, and the web browser loaded a single page
to simulate a typical usage scenario.

Invariant Extraction and Caching Invariant extraction is time consuming. It requires
costly operations such as file parsing as well as disassembling and emulating code. To
alleviate its impact on BINtegrity’s performance, we attempted to reduce invariant ex-
traction to a necessary minimum. On one hand, we allow fine-tuning of BINtegrity to
a specific platform’s performance requirements by setting the checking levels. On the
other hand, invariant extraction is only performed once per program state by caching its
result. The drastic effect of caching is shown in Figure 5. As can be seen, checks based
on the results of the code invariants as well as both code and symbol invariants only add
little additional overhead once they are cached.

Frequency and Distribution of Invariant Extraction As mentioned before, the number of
invariant extractions during program execution is critical to BINtegrity’s performance.
Table 3 shows how often code (for L2 checks) as well as code and symbol invariant
extractions (for L3 checks) were performed. In spite of the complexity of the appli-
cations tested and the usage scenario, the numbers are quite low. In combination with
caching, BINtegrity only has to carry out fewer than 100 performance-critical invariant
extractions in each case.

15

B cache hit
3 cache miss

10°

Fig. 5: Effect of invariant caching measured in
system call latency. Once cached, checking in-
variants only incurs marginal overhead.

microseconds
=
Y

10

10°
baseline TACB TACB TACB

+ +
Code Inv. Code + Symbol Inv.

Invariant Code Code 4 Symbol Args Table 3: Number. of invar.iant.extractions exe-
Extractions cuted for two typical applications. Args refers
to the number of static argument assignments
that were enforced.

Android Browser 21 53 0
Nginx Web Server 19 24 10

Figure 6 shows the distribution of invariant extractions over time. We can see that a
large number of extractions are executed at process startup, with the next spike occurring
when the application first executes its main functionality. After a few seconds, the main
code paths have been executed at least once. Hence, they do not require any further
extractions during normal operation and, thus, unnecessary overhead is avoided.

Memory Overhead For each process in the system, BINtegrity reserves space to cache
invariants for up to 257 code points. Every code point requires 40 bytes of storage for
statistics that we use to measure our runtime performance. The memory requirement
for this cache is 10 KB per process. During our evaluation, we never encountered more
than 74 code points being cached for a process. The unused cache space provides enough
storage to handle applications that require caching invariants for more code points while
not wasting resources as the the overall memory usage is relatively small. We consider
tuning the size of the cache as part of specializing BINtegrity for a specific platform.
We further require a small amount of memory to store our per process TACB. The
memory requirement for each TACB entry is 16 bytes. During our evaluation, we never
encountered a process with more than 100 entries stored in its TACB, thus staying below
2 KB per process. In total, BINtegrity adds a memory overhead of around 12 KB for each
process. This memory overhead is negligible if compared with the memory required
through the use of shared libraries, some of which easily occupy a few hundred kilobytes.

Benchmarks To measure BINtegrity’s impact on system performance, we ran various
benchmarks covering both specific metrics (e.g., disk I/0) and overall performance.

Disk I/0 For the disk I/0 performance evaluation, we used Bonnie++, configured to use
a filesize of 500 MB for access, and 16,348 files for creation/deletion benchmarks. Being
platform independent, we ran it on both ARM and MIPS. For the ARM implementation,
the worst-case overhead is 10% for random seeks. On MIPS, the worst-case overhead
is 20% for block write operations.

® ‘ ‘ ‘ ‘ ‘ Fig. 6: Invariant extractions over the lifetime
s 1 of two typical applications. For both applica-
ol] tions, we show that extractions are executed at

program startup and at the point where the ap-
plication performs typical activity for the first
time. After a code path has been executed once
it causes no further extractions.

0 20 40 60 80 100 120
Process runtime (seconds)

Network I/O For the WZR-HP-G450H, we used the Apache benchmark from a separate
computer on the LAN to request a 128 KB document. The document was served by the
default nginx installation running on the router. The average overhead measured over
1000 requests was 2.03%.

Whole-System Performance On the Galaxy Nexus Android phone, we used the pop-
ular AnTuTu benchmark® to measure performance overhead introduced by BINtegrity.
The AnTuTu benchmark measures a variety of system components such as the Android
runtime and the I/O subsystem. The benchmark result shows that BINtegrity only incurs
an overhead of 1.2% compared to the baseline.

8 Discussion and Limitations

In general, BINtegrity does not prevent code execution from arbitrary memory locations,
but restricts the invocation of kernel services. Hence, BINtegrity mitigates attacks that
interact with the operating system, but does not prevent attacks against the application
logic itself. In the following, we discuss both how BINtegrity deals with certain code
constructs and which aspects could hamper its effectiveness.

Call Stack Depth The call stack BINtegrity relies on to extract data from the binary is
only two levels deep. Undoubtedly, a deeper call stack would enable us to perform more
thorough integrity checks. However, a deeper call stack would require keeping track of
return addresses in the process’ memory, which both contradicts our threat model and
in addition slows down analysis.

A study of two lightweight C library implementations that are popular in the em-
bedded world, uClibc and bionic, shows that only a relatively small subset of the library
functions use indirection, i.e. call another function before invoking the system call (Fig-
ure 4). Besides, these indirections can be removed entirely by recompiling the C library
with inlining.

Forward Emulation BINtegrity’s effectiveness is determined by the information pro-
vided by the forward emulation. Some system call wrappers will degrade information on
system call arguments by performing operations that our register-based code emulation
cannot track. While for uClibc, the number of wrappers that modify might seem high,

® AnTuTu https://play.google.com/store/apps/details?id=com.antutu.ABenchM
ark

https://play.google.com/store/apps/details?id=com.antutu.ABenchMark
https://play.google.com/store/apps/details?id=com.antutu.ABenchMark

17

we note that only five out of them are security-critical. We plan to address this issue in
future work by enhancing our static analysis with a lightweight memory model.

Forging the Link Address An attacker who is aware of BINtegrity could try to set ret;,
to another value. However, only valid values would pass all steps of the invariant en-
forcement, i.e. stemming from a correct origin, adhering to call chain integrity and ar-
gument integrity and be imported based on the rules of symbol integrity. If the attacker
succeeds in finding such an address, she would lose control flow control after the func-
tion returns and thus be limited to a single function invocation.

Table 4: Characteristics of C library system call wrap-
pers that degrade the detail level of the extracted in-

System call wrappers Bionic uClibc

50.“11 N 13411 2;1? variants. The numbers were derived from the binaries
sSing indirections
Modifying arguments 1 6o Ve found on Android (Bionic) and OpenWRT (uClibc).

Indirections can be reduced to zero by recompiling the
library.

Just-In-Time Compilation Just-In-Time (JIT) compilation, best known for speeding up
Javascript and ActionScript, is rarely found on embedded devices. Although, in theory,
JIT compiled code directly violates BINtegrity’s fundamental idea of only executing
code that is present in the binary on disk, BINtegrity does not break JIT. The reason is
that JIT compiled code never directly interacts with the standard C library. At the same
time, BINtegrity prevents JIT-ed code from direct interaction with the standard C library
or the system call interface

9 Conclusions

In this paper, we presented BINtegrity, a novel approach to exploit mitigation that is
specifically tailored towards embedded systems that are based on common RISC archi-
tectures. BINtegrity works by extracting a combination of static and dynamic properties
relevant to OS service requests from executables and enforcing them during runtime.

We leverage common properties of the RISC architecture to design and build an
exploit mitigation system that is practical and low-overhead and thus lends itself specif-
ically for the use in systems with limited resources.

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-Flow Integrity. In: ACM Confer-
ence on Computer and Communications Security (CCS) (2005)

2. Andersen, S., Abella, V.: Data Execution Prevention. Changes to Functionality in Microsoft

Windows XP Service Pack 2, Part 3: Memory Protection Technologies (2004)

. Baume, T.: Netcomm NBS5 Botnet PsybOt. http://baume.id.au/psyb0t/PSYBOT.pdf

4. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.: ROPecker: A Generic and Practical Ap-
proach for Defending against ROP Attacks. In: Network and Distributed System Security
Symposium (NDSS) (2013)

5. Craig Heffner: OSVDB 86824 Exploit. http: //www.devttys0.com/wp-content/upload
s/2012/10/dir6051_exploit.txt

6. Davi, L., Hanreich, M., Paul, D., Sadeghi, A.R., Koeberl, P., Sullivan, D., Arias, O., Jin, Y.:
HAFIX: Hardware-assisted flow integrity extension. In: Proceedings of the Annual Design
Automation Conference (2015)

W

http://baume.id.au/psyb0t/PSYB0T.pdf
http://www.devttys0.com/wp-content/uploads/2012/10/dir605l_exploit.txt
http://www.devttys0.com/wp-content/uploads/2012/10/dir605l_exploit.txt

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call

Stack Information. In: IEEE Symposium on Security and Privacy (Oakland) (2003)

. Goektas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out Of Control: Overcoming

Control-Flow Integrity. In: IEEE Symposium on Security and Privacy (Oakland) (2014)

. Jacob Holcomb: CVE-2013-465 Exploit. http://www.exploit-db.com/exploits/

27133/

Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous System Call
Arguments. In: European Symposium on Research in Computer Security (ESORICS) (2003)
Kuznetsov, V., Szekeres, L., Payer, M., Candea, G., Sekar, R., Song, D.: Code-Pointer In-
tegrity. In: USENIX Symposium on Operating Systems Design and Implementation (OSDI)
(2014)

. McVoy, L., Staelin, C.: Lmbench: Portable tools for performance analysis. In: USENIX An-

nual Technical Conference (USENIX ATC) (1996)

Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent ROP exploit mitigation using
indirect branch tracing. In: USENIX Security Symposium (USENIX SEC) (2013)

Provos, N.: Improving host security with system call policies. In: USENIX Security Sympo-
sium (USENIX SEC) (2003)

Schuster, F., Tendyck, T., Liebchen, C., Davi, L., Sadeghi, A.R., Holz, T.: Counterfeit Object-
oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Appli-
cations. In: IEEE Symposium on Security and Privacy (Oakland) (2015)

Shu, X., Yao, D., Ramakrishnan, N.: Unearthing stealthy program attacks buried in extremely
long execution paths. In: ACM SIGSAC Conference on Computer and Communications Se-
curity (CCS) (2015)

Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: Eternal War in Memory. In: IEEE Sympo-
sium on Security and Privacy (Oakland) (2013)

Team Cymru: SOHO Pharming. https://www.team-cymru.com/ReadingRoom/Whitepa
pers/2013/TeamCymruSOHOPharming.pdf (2014)

Ullrich, J.: Linksys Worm The Moon. https://isc.sans.edu/forums/diary/Linksys—+
Worm+TheMoon+Summary-+What+we+know+so+far/17633 (2014)

Vaughan, J.A., Hilton, A.D.: Paladin: Helping Programs Help Themselves with Internal Sys-
tem Call Interposition (2010)

van der Veen, V., Andriesse, D., Goktas, E., Gras, B., Sambuc, L., Slowinska, A., Bos, H.,
Giuftrida, C.: Practical Context-Sensitive CFI. In: ACM Conference on Computer and Com-
munications Security (CCS) (2015)

van der Veen, V., dutt Sharma, N., Cavallaro, L., Bos, H.: Memory Errors: The Past, the
Present, and the Future. In: Conference on Research in Attacks, Intrusions, and Defenses
(RAID) (2012)

Wagner, D., Dean, D.: Intrusion Detection via Static Analysis. In: IEEE Symposium on Se-
curity and Privacy (Oakland) (2001)

Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: ACM
Conference on Computer and Communications Security (CCS) (2002)

Zhang, M., Sekar, R.: Control flow integrity for COTS binaries. In: USENIX Security Sym-
posium (USENIX SEC) (2013)

Zhou, Y., Wang, X., Chen, Y., Wang, Z.: ARMlock: Hardware-based Fault Isolation for
ARM. In: ACM Conference on Computer and Communications Security (CCS) (November
2014)

http://www.exploit-db.com/exploits/27133/
http://www.exploit-db.com/exploits/27133/
https://www.team-cymru.com/ReadingRoom/Whitepapers/2013/TeamCymruSOHOPharming.pdf
https://www.team-cymru.com/ReadingRoom/Whitepapers/2013/TeamCymruSOHOPharming.pdf
https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Summary+What+we+know+so+far/17633
https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Summary+What+we+know+so+far/17633

	Runtime Integrity Checking for Exploit Mitigation on Lightweight Embedded Devices
	Introduction
	State of the Art
	Threat Model
	Approach
	Ensuring Runtime Integrity
	Trusted Application Code Base
	Process Runtime State Extraction
	Invariant Extraction
	Invariant Enforcement
	Function Call Arguments
	Dynamic Code Loading

	The BINtegrity System
	Implementation
	Integrity Checking Levels
	Invariant Caching

	Evaluation
	Security Evaluation
	Performance

	Discussion and Limitations
	Conclusions

