

Berlin Institute of Technology

FG Security in Telecommunications

SMS of Death: from analyzing to attacking mobile phones on a large scale

USENIX Security 2011

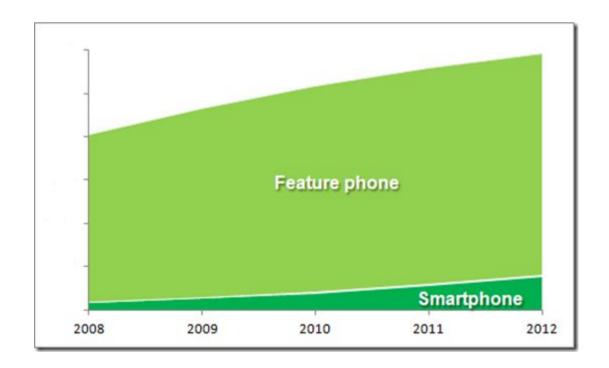
<u>Collin Mulliner</u>, Nico Golde, Jean-Pierre Seifert {collin,nico,jpseifert}@sec.t-labs.tu-berlin.de

Introduction

- Mobile phone security is a hot topic, but...
 - Previous work only focused on smartphones
- We always got the question: can you "hack" my cheap phone?
 - Cheap phone → Feature Phone
- This work targets feature phones
 - We investigate the (in)security of SMS implementations

So what is a Feature Phone?

- Mobile phone with "additional features" → feature phone
 - Web browser, MP3 player,
- Single CPU device (smartphones normally have 2 CPUs)
 - Baseband and applications run on same processor
- 3rd party applications just J2ME, BREW, ...
 - No native code!
- Reasons why feature phones are still very popular
 - Price, battery run time, rugged case, ...



Why Feature Phones?

- World wide ~4.6 billion mobile phone users
- Only 16% of mobile phones in the world are smart phones!
 - A little more in the western world
- Therefore, feature phones → large impact!
- Feature phones haven been mostly ignored by other work.

Contributions

Vulnerability Analysis Framework for Feature Phones

- Novel method for crash monitoring
- Analysis method based on a small GSM base station

Bugs Present in Most Feature Phone Platforms

Bugs can be abused for Denial-of-Service attacks

Attack Impact

- Large scale attacks possible with only a few bugs
- End users, manufacturers, operators

Feature Phone Platforms

- Manufacturer has one OS for their entire line of feature phones
 - Nokia S40, Sony Ericsson OSE, ...
- 1) Since all phones are based on same platform
 - A bug found on phone A works on phones B, C, D, ... Z
- 2) Single CPU architecture
 - Application crash → phone crash → reboot

Manufacturer Selection

- Way too many mobile phone manufacturers
 - We can't analyze after all of them
- Select the few ones that have a relevant market share
 - This makes sure that we have a global effect, remember our aim is "large scale"!

Manufacturer Selection

- Way too many mobile phone manufacturers
 - We can't analyze after all of them
- Select the few ones that have a relevant market share
 - This makes sure that we have a global effect, remember our aim is "large scale"!

Selected Manufacturers

- Nokia, Samsung, Sony Ericsson, LG, Motorola, and Micromax
 - Micromax is a very popular brand in India
- Market shares provide a good basis for targeted attacks
 - Say you want to attack mobile users in Germany you just look at the market shares for Germany and know what device(s) to target

(d) World, for the year 2009

Manufacturer	Market Share
Nokia	38%
Samsung	20%
LG	10%
Sony Ericsson	5%
Motorola	5%
ZTE	4.5%
Kyocera	4%
RIM	3.5%
Sharp	2.6%
Apple	2.2%
Others	5%

(a) Germany, November 2009

Manufacturer	Market Share
Nokia	35.4%
Sony Ericsson	22.0%
Samsung	15.0%
Motorola	8.6%
Siemens	5.4%

(b) U.S.A., May 2010

Manufacturer	Market Share
Samsung	22.4%
LG	21.5%
Motorola	21.2%
RIM	8.7%
Nokia	8.1%

(c) Europe, June 2010

Manufacturer	Market Share
Nokia	32.8%
Samsung	12.5%
LG	4.1%
Sony Ericsson	3.7%
Apple	3.0%
RIM	2.4%
Others	3.0%

Acquiring Phones

- We need a phones from all our selected manufacturers
 - We selected 6 manufacturers...
- Buying them new is no option, since this becomes expensive
 - About 150 Euro per phone
- eBay is our friend;)
 - Decent feature phones are still expensive
 - We bought many "half broken" phones (5...30 Euro)

- Phones from eBay are always fun...
 - Many phones don't really allow a "hard reset" Phones still have: SMS, appointments, and pictures...

Why SMS (Short Message Service)?

- Supported by every mobile phone
 - ...and of course by every mobile operator
- Works everywhere in the world
 - Attacker can be located anywhere
 - No proximity required

- A ton of features
 - Flash SMS, VCard, MMS notification, multipart, port addressing, SIM toolkit, ...
 - Many implemented but rarely used (<u>untested code!</u>)
- Mostly no user interaction required
 - True remote bugs!

Analyzing Feature Phones ... (the challenges)

- Completely closed system
 - Too many platforms
- No native 3rd party applications
 - No SDK and no debugger
- JTAG is no solution
 - Need detailed platform knowledge to use JTAG for serious work
 - Infeasible to hook up JTAG on 10+ different phones
- Reverse Engineering is a lot of work
 - Multiple platforms make it even worse
- Further: sending a lot of SMS messages is pricey

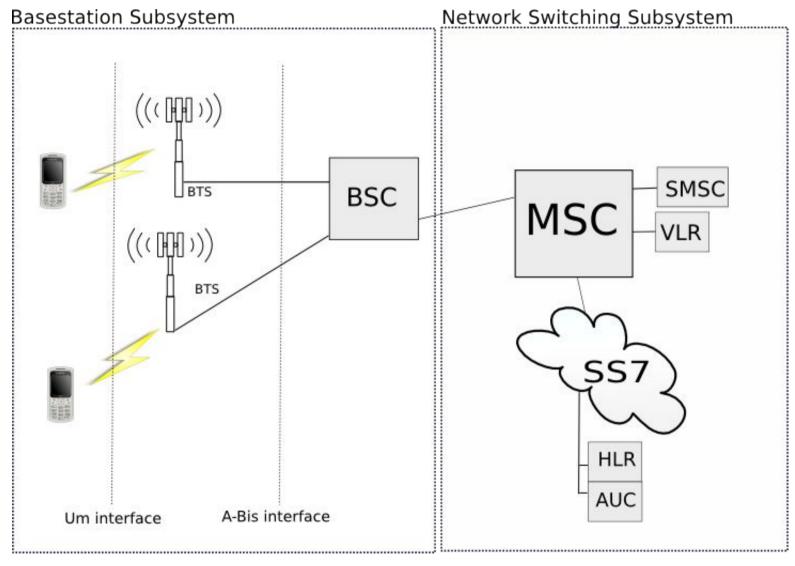
Our Solution

- Use our own GSM network for analysis
 - SMS messages for free
 - Speed improvement over real operator network
 - Full control over the entire environment
 - Use phone ↔ BTS communication for analysis
- Fuzzing-based testing
 - No source code no reverse engineering required
 - Make test cases once ... use them for all phones
- Fuzzing requires monitoring
 - Without monitoring fuzzing is useless!

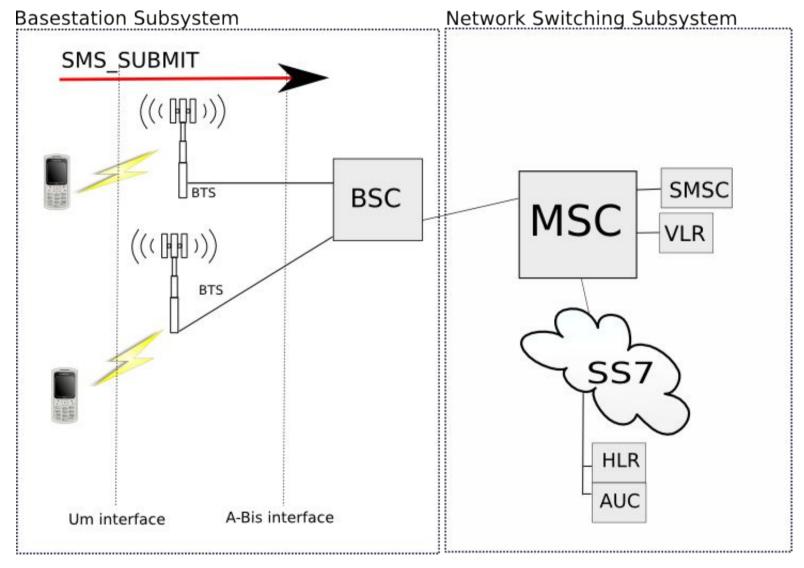
GSM Network Equipment

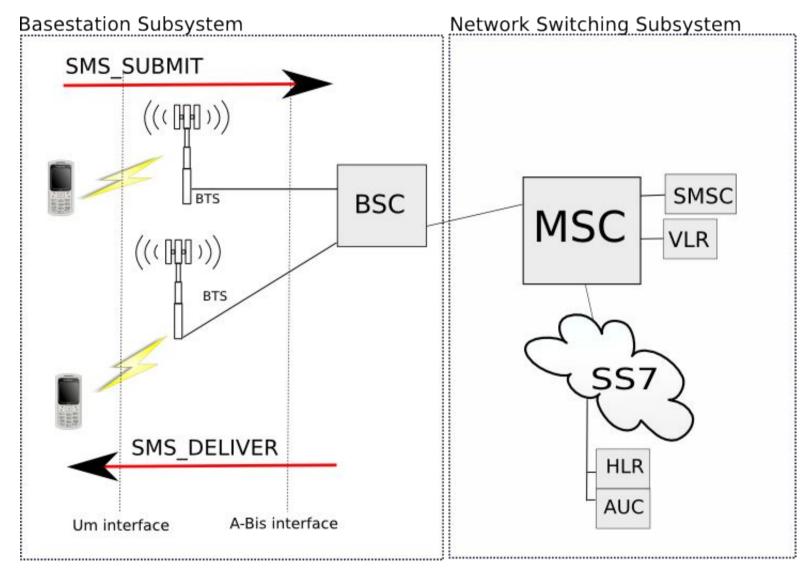
- Industry traditionally very closed
 - Protocol specs exist (>1k PDFs)
 - No public documentation of GSM equipment

→ OpenBSC, OpenBTS, OsmocomBB are game changers


- OpenBSC:
 - Free Software implementing A-bis over IP
 - Minimal subset of HLR, MSC, SMSC, BSC, and AUC
 - Supports a number of different base transceiver stations

Our Setup


Laptop (running OpenBSC), nanoBTS, and some phones


A typical GSM network (simplified)

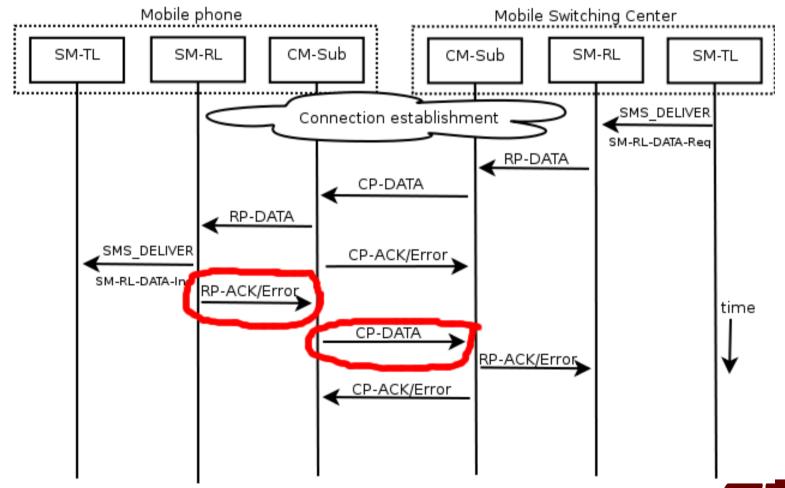
SMS submission

SMS delivery

OpenBSC and SMS

- Supports SMS from phone → phone
- Provides text-based interface for text-only SMS messages
 - → by default not fuzzing friendly
 - Only text
 - Very slow/for attached subscribers
 - Stored message sent to all subscribers

OpenBSC Modifications


- Injection of pre-encoded SMS in PDU format (SMS SUBMIT)
- Relaxed message checking
 - Allow fuzzed/unsupported message types
- Logging
 - Phone feedback: Memory full, Protocol errors, ...
 - Channel release states (break downs)
- Event → message mapping

```
phone (1331) went offline at 2010-10-29 14:28:37,
checking last sms...
the error was very likely caused by the following sms:
41000491311300f1880500034affdb4040404040404....
```


Monitoring the Phones

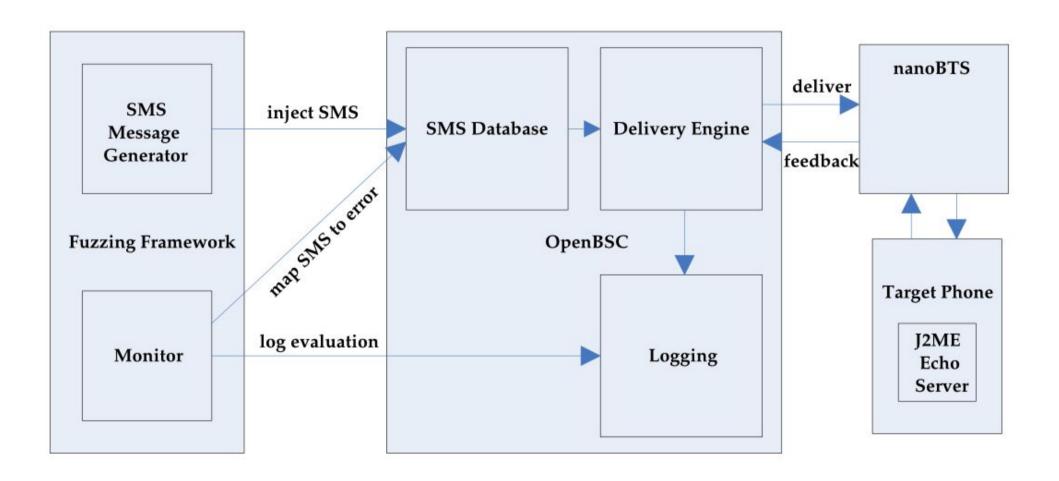
- Messages sent over SDCCH/SACCH
 - Monitor feedback and channel tear down

12.8.2011

Additional monitoring

- Finding more than crashes
 - State "mess up" → swallowed messages
- Health monitoring with "echo server" on the phone
 - Binds to SMS port
 - Receives incoming message
 - Replies with message to "special" number
 - Implemented in J2ME

- Inject "echo" SMS every N messages
 - Check message counter in SMSC database (OpenBSC)


Test cases

- Multipart
 - UDH (reference, parts, current part)
- MMS notification
 - Various variable length strings
- Simple text
 - Invalid alphabet encoding (array out of bounds)
- Flash SMS
 - Separated code paths
 - Multipart
- TP-PID/TP-DCS combinations
 - In combination with UD payload
- ~120k messages

Fuzzing trial

- Python library for SMS generation
- Submit ~1000 of messages to OpenBSC
 - Stored in SMSC database
- Send message to fuzz-phone(s)
 - Open channel
 - Send message 1...n
 - Close channel
- Script evaluating added logging
 - Flag invalid messages
 - Monitor channel breakdown → SMS

The Complete (logical) Setup

Results

- Fuzzed for quite some time
 - Took a lot of work
- A lot of automation but you still have to...
 - Delete messages by hand
 - Get phones out of the "totally stuck" mode → "hard reset"
- We were mostly looking for crashes that...
 - Disconnect phone from network
 - Reboot the phone
- Here are some interesting bugs we found!

Nokia S40

- The world wide market leader!
- S40 → Nokia's feature phone platform
 - Our test phones: 3110c, 6300, 6233, 6131 NFC,...
- BUG
 - 8 bit class 0 (Flash SMS) with certain TP-UD payload
- **Impact**
 - "Nokia White Screen of Death"
 - Interface reboot
 - Disconnect phone from network (interrupting call)
 - Message ACK never reaches network (more on that later...)
 - Message not visible on the phone
 - Watchdog shuts down phone after repeated crashes

Sony Ericsson

- Very common in Germany (22% market share)
- Test phones: w800i, w810i, w890i, Aino (May 2010)

- BUG
 - Certain (reserved) TP-PID value & >= certain length TP-UD
- **Impact**
 - Complete phone reboot
 - Disconnect phone from network (interrupting call)
 - Message ACK never reaches network (again, later...)
 - Message not visible on phone
 - Sometimes also completely freezes
 - Errm, one test phone bricked

LG Electronics

- Test phone: LG GM360, likely more phones affected
- **BUG**
 - Classic buffer overflow in various MMS notification fields
- **Impact**
 - Phone reboots
 - If PIN set → phone locked (permanently offline)
 - Disconnects from network (interrupting calls)
 - Same happens on opening the message
- Good target for future work (reversing/code execution)

Motorola

- Test Phones: Razr, Rokr, SVLR L7
- BUG
- Internet Electronic Mail interworking (0x32) + certain payload
- **Impact**
 - Flashing white screen
 - User interface restart
 - Network disconnect (interrupt calls)

Rather fragile devices, couldn't test in-depth due full memory, weird behavior...

Micromax

- Number three (3) manufacturer in India!
- Test phone: X114 (tested briefly, last arrived phone)

- BUG
 - Multipart assembly madness again (this time Flash)
 - Reference id has to be unused (no problem)
- **Impact**
 - Few seconds after receipt → black screen
 - Network disconnect (interrupt calls)
 - Message is silent

Notifying Vendors

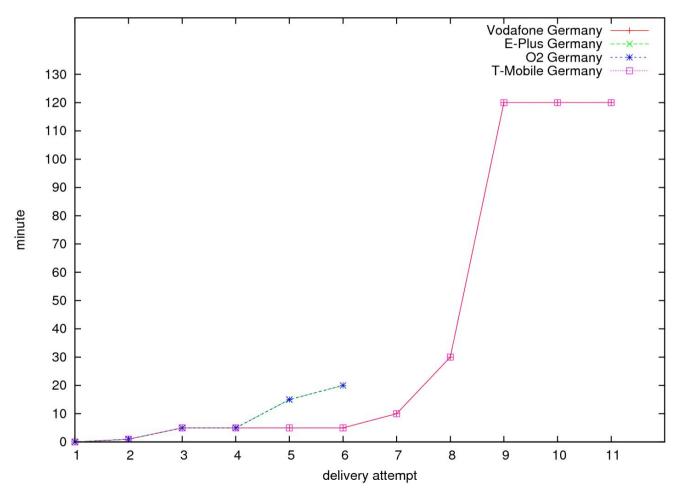
- Nokia
 - no problem, got contacts from the past
- Sony Ericsson
 - Painful, but we met some guy at a security conference ;-)
- Motorola
 - security@motorola.com does not really work that well
- Samsung
 - Contacted
- LG
- Haven't found a security contact, but contacted through GSMA
- Micromax
 - Haven't found a security contact, contacted through GSMA

The Special "early" Crash

- Some bugs crash the phone before ACKing the SMS to the net
 - Nokia + Sony Ericsson
- Results: Network believes SMS was not received
- Action: SMSC tries to re-transmit message
 - Phone crashes again
 - Repeat...
 - Fix: move SIM card to non affected phone

The Special "early" Crash

- Some bugs crash the phone before ACKing the SMS to the net
 - Nokia + Sony Ericsson
- Results: Network believes SMS was not received
- Action: SMSC tries to re-transmit message
 - Phone crashes again
 - Repeat...
 - Fix: move SIM card to non affected phone
- Conclusion: Abuse behavior for attack amplification
 - Send one message → <u>network makes phone crash</u> multiple times
 - How often and in what interval is this happening?


Testing SMS Re-Transmits Timings

- Linux PC with Bluetooth dongle + Sony Ericsson phone
- Monitor phone using Bluetooth RFCOMM link
 - Connect to "Dialup Networking Service"
 - Wait until Bluetooth link gets disconnected (phone reboots!)
- Attack phone, count reboots
 - Let it run for a few days (swap SIM cards in between)

SMS Re-Transmit Timings for German MNOs

Additional delivery attempt 20/24 hours after last attempt shown in graph

Attacks

- Clearly bugs can be used for attacks
- Disconnect calls
 - With just 1 SMS, to either side of the call (if both are mobile)
- Make sure a "specific" person is not reachable
 - Send an SMS every few seconds
 - Costs a lot, but maybe its worth it
 - If the phone switches off it will be cheap (Nokia)

Large Scale Attacks... possible

- **Mobile Network Operator** (MNO) → disconnect his customers
 - Make him look bad
 - Extort him (organized crime) (customers might claim their phone to be broken)
 - Smaller operator will likely have issues with a massive number of reconnecting phones
- **Manufacturer** → attack random people owning specific brand
 - Make them look had
 - Extort him (organized crime)
- **Public Distress** → disconnect a lot of people
 - Next big outdoor event (protest, festival, etc...)
 - Police often relies on mobile phones
 - Remember Estonia 2007? (...will become expensive)

Sending large Quantities of SMS Messages

- Using a few normal phones wont work
 - Very slow, pricey, easily traceable, ...

- Cheap, no-questions asked, high injection rate
- Smart/mobile phone botnets
 - Cheap (free!), fast if you have a large botnet (remember all those jailbroken iPhones with SSH and default root password?)
- SS7 Access
 - SPEED, good price, hard to trace, no content limitations (you are/know an operator)

Countermeasures: SMS filtering by MNOs

- Mobile Network Operators can filter SMS messages
- But filter software seems not well prepared for binary
 - Mostly designed to fight SMS spam and filter political content
- How to configure filters? (work done after this paper was finished)
 - We don't want to publish payloads (deal with manufacturers!)
 - We compiled a white paper that tells you what to filter
 - White paper is available from:

http://tinyurl.com/smssecurity/

Conclusions

- With openness on the GSM network side one can find bugs in the "closed" mobile phones
- Bugs in all major feature phone platforms!

- Large scale attacks are possible with this bug arsenal
- SMS re-transmit by operator amplifies the attacks
- Attack against users possibly can lead to attack against operator
- Manufacturers need to provide updates for feature phones

Q & A

Thank you for your attention!

Question?

Demo Video

