
Runtime Integrity Checking for
Exploit Mitigation on
Embedded Devices

1

Matthias Neugschwandtner
IBM Research, Zurich

eug@zurich.ibm.com

Collin Mulliner
Northeastern University, Boston

collin@mulliner.org

9th International Conference on Trust & Trustworthy Computing

Vienna, August 2016

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Devices?

2

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Internet of Things!

3

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Devices

• Produced in large quantities
• not a computer, but actually a computer

• Mostly low cost/power/end RISC-based CPUs
• exceptions, e.g. CPUs for smartphones

• Devices run open/free software such as Linux
• light software stacks, for example uClibc

4

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Device Security

• Valuable targets
• always on
• contain interesting personal data
• control important things

• Contain software vulnerabilities
• e.g. memory corruption
• exploited like desktops and servers

5

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Device Security

• Valuable targets
• always on
• contain interesting personal data
• control important things

• Contain software vulnerabilities
• e.g. memory corruption
• exploited like desktops and servers

• Mitigations not state of the art!
6

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

Exploit stages:

• Inject payload
• Hijack control flow
• Run payload

7

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

• Inject payload
• Data Execution Prevention
• Address Space Layout Randomization

• Hijack control flow
• Control Flow Integrity

• Run payload
• Policies for system call usage
• System call based IDS

8

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

• Inject payload
• Data Execution Prevention

• MMU hardware support required (SW emulation slow)

• Address Space Layout Randomization
• limited address space on embedded devices

• Hijack control flow
• Control Flow Integrity

• source code beneficial
• high overhead
• hardware support only for next-gen Intel processors

• Run payload
• Policies for system call usage

• requires writing policies for every application

• System call based IDS
• mimicry attacks, overhead

9

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Goal: SotA Mitigations for
embedded RISC devices

• Leightweight exploit mitigation
• also suitable for “budget” SoCs

• Use RISC hardware features

• Tailor for “binary only” / COTS
• source code is not always available

10

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

RISC Architecture Features

• Register only operations
• load / store architecture

• Many registers and specialized registers
• e.g. control flow

• Fixed instruction length
• easier disassembly

• Instruction / address alignment
• no jumping into the middle of an instruction

11

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploits revisited

• Exploits use OS functionality
– read/write data, launch process, …

• Exploit OS usage differs from original program
– different syscall, different parameters, ...

12

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploits revisited

• Exploits use OS functionality
– read/write data, launch process, …

• Exploit OS usage differs from original program
– different syscall, different parameters, ...

• Ensure that runtime OS usage is coherent
with OS usage in binary executable

13

⇒ BINtegrity

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Threat Model

• Trusted kernel
• we protect user space code

• Trusted binaries on disk
• executable and libraries not modified by attacker

• Memory is untrusted
• we try to fight off memory corruption attacks!

14

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

BINtegrity Overview

BINtegrity

binary
executable

runtime
process

kernel OS
service

system call

launch
program

inspect
in

te
rc

ept

✔ / ✖

15

corrupted?

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Process Runtime State

• System call return address retsc
• System call information

– System call number
– System call arguments

16

program
library

(system call wrapper)
kernel

(system call handler)

function call system call

link address return address

• Link address retlr
– specific to RISC
– register containing return address of last function invocation

• Indirect jump target (on MIPS)

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Code Invariant Extraction

17

lui $a1, 0x46
li $a2, 7
lui $t9, mmap@plt
jalr $t9
nop

addiu $sp, -0x28
sw $ra, 0x28-4

...

link address offset

function
prologue

argument
assignment

jal sub02 disassemble
backwards

execute
forwards

• Leightweight execution state (only registers)

• Invariants = concrete values at end of execution

• Static analysis on the binary executable on disk

function call

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Integrity

1. Code Provenance

– where do function invocations originate from?

– only allow legit locations

2. Code Integrity
– is the call chain reflected by the binary?

– do the system call arguments match the invariants?

3. Symbol Integrity
– are called system call wrappers actually imported?

18

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Code Provenance

• Trusted Application Code Base (TACB)
– valid code regions of the process runtime image

• mapped text segments of a running process

• includes text segments of libraries

– fixated after linking stage

• Call chain has to originate from the TACB
– return addresses: both retsc and retlr
– everything outside TACB is invalid

19

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Code Integrity

• Is the predecessor of retsc really a syscall?
– has the right syscall been invoked?

20

...
lui $a3, 0x46
li $a0, 7
lui $t9, mmap@plt
jalr $t9
nop

...
lw $t0, 0xcafe
or $a3, t0
li $v0, 0x101D
syscall 0
nop

program code syscall wrapper

• Is the predecessor of retlr really a control flow transfer?
– does the target of the branch match the callee?

• Do the actual syscall arguments match the invariants?
– does the syscall wrapper modify arguments?

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Symbol Integrity

• Dynamic linking uses function symbols
• Symbol mmap has to be

– exported by the library
– imported by the program

• Match
– symbol of function identified by return address
– imports of binary identified by link address

21

program library
mmap()

link address return address

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation

Attack class Technique Defense

Code injection

inject code in data segment code provenance

inject (and overwrite existing)
code in text segment

code integrity (instruction
mismatch)

Code reuse

use indirect jump gadget code integrity (target of
branch does not match)

symbol integrity (function not
imported)

use gadget that calls library
function

argument integrity (argument
mismatch)

22

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

23

...
lui $t9, write@plt
li $a0, 2
jalr $t9
nop

Indirect jump gadget

• Violates call chain integrity
– register $t9 does not match invariant

mmap

lui $t9, mmap_address

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

• Violates argument integrity
– runtime state value for $a0 contradicts invariant

– write can only access stdout

24

...
lui $a0, 1
jal write
nop

Fixed jump gadget

lui $a0, 12

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

• Violates argument integrity
– runtime state value for $a2 contradicts invariant:

RWX (7) vs. RX (5)

– mmap can only map read/write
25

...
lui $a2, 5
jal mmap
nop

Fixed jump gadget

lui $a2, 7

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

• Violates symbol integrity
– system is not imported by the program

26

...
beq $a0, locB
li $a0, 2
jalr $t9
nop

Indirect jump gadget

system

lui $t9, system_address

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Process

The BINtegrity System

27

BINtegrity Kernel Module

Runtime Information

Binary

Library 1…N

Emulation Engine

ELF Parser Disassembler Emulator

TACB
Invariant

Cache

State Integrity Enforcer

str
ipp

ed

bin
ari

es
ARM

 (+
thu

mb)

MIP
S

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Performance Evaluation

• Buffalo Router WZR-HP-G450H (MIPS)
– Apache benchmark & nginx

– runtime overhead: 2.03%

• Galaxy Nexus Phone (ARM)
– AnTuTu benchmark

– measures Android runtime & I/O subsystem

– runtime overhead: 1.2%

28

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Internal Performance Evaluation

• Costly operations
– reading and parsing files

– instruction emulation

• Memory footprint
– Kernel module code

– Cache

• cache invariants for < 257 code points

• 16 bytes per code point

• requires total of 12KB per process

29

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Performance: Caching

30

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Performance: Invariant Extractions

31

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

Conclusions

• Cover-all-bases mitigation approach

• from payload injection, over hijacking control flow, to
running the payload

• Practical
• no rewriting, no instrumentation, no configuration
• transparent to applications

• Efficient
• only 2% overhead in application-level benchmarks

• Open source
• download at http://www.bintegrity.org/

32

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9th Conference on Trust & Trustworthy Computing, Vienna, August 2016

End

33

