Runtime Integrity Checking for
Exploit Mitigation on
Embedded Devices

Matthias Neugschwandtner
IBM Research, Zurich

eug@zurich.ibm.com

Collin Mulliner

Northeastern University, Boston
collin@mulliner.org

9" International Conference on Trust & Trustworthy Computing
Vienna, August 2016

Embedded D

evices?

; NETFLIX

Epores0

Samsung Apps (& Your Video &
e
!
aem v
LT = 1,

£USA
TODAY.

Web Browser USA TODAY Twitter

. I -

- R,
Alishare Play ESPN ScoreCenter AccuWeather -

-
[A Login | [B) WallPaper [Account Manager

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Facebook Netflix ~ HuluPlus YouTube

Pandora

-

vimeo

Vimeo _ =

MOG Music

samsune

Samsung SPSN

%] Tools

) Return

Internet of Things!

v"“

NETFLIX

Facebook Netflix ~ HuluPlus YouTube

Samsung Apps (& Your Video &
e

3
L == i
£USA
TODAY.
Web Browser USATODAY Twitter

. [— >~ 5 —

= y .
Alishare Play ESPN ScoreCenter AccuWeather e Vimeo _ =

-
[A Login | [B) WallPaper [Account Manager

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

MOG Music

samsune

Samsung SPSN

%] Tools

) Return

Embedded Devices

* Produced in large quantities
* not a computer, but actually a computer

* Mostly low cost/power/end RISC-based CPUs

e exceptions, e.g. CPUs for smartphones

* Devices run open/free software such as Linux
* light software stacks, for example uClibc

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Device Security

* Valuable targets

* alwayson
e contain interesting personal data
e control important things

e Contain software vulnerabilities

* e.g. memory corruption
* exploited like desktops and servers

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Embedded Device Security

* Valuable targets

* alwayson
e contain interesting personal data
e control important things

e Contain software vulnerabilities

* e.g. memory corruption
o exploited like desktops and servers

* Mitigations not state of the art!

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

Exploit stages:

* |nject payload
* Hijack control flow
* Run payload

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

* |nject payload
* Data Execution Prevention
* Address Space Layout Randomization

* Hijack control flow
* Control Flow Integrity
* Run payload

* Policies for system call usage
* System call based IDS

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation - State of the Art

* |nject payload
* Data Execution Prevention
e MMU hardware support required (SW emulation slow)

* Address Space Layout Randomization
e limited address space on embedded devices

* Hijack control flow

* Control Flow Integrity
e source code beneficial
e high overhead
e hardware support only for next-gen Intel processors

* Run payload
* Policies for system call usage
e requires writing policies for every application

» System call based IDS

e mimicry attacks, overhead

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Goal: SotA Mitigations for
embedded RISC devices

* Leightweight exploit mitigation

e also suitable for “budget” SoCs

e Use RISC hardware features

* Tailor for “binary only” / COTS

* source code is not always available

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

RISC Architecture Features

Register only operations

load / store architecture

Many registers and specialized registers
e e.g.control flow

Fixed instruction length
e easier disassembly

Instruction / address alighment

no jumping into the middle of an instruction

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

11

Exploits revisited

* Exploits use OS functionality
— read/write data, launch process, ...

* Exploit OS usage differs from original program

— different syscall, different parameters, ...

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploits revisited

* Exploits use OS functionality
— read/write data, launch process, ...

* Exploit OS usage differs from original program

— different syscall, different parameters, ...

* Ensure that runtime OS usage is coherent
with OS usage in binary executable

= BINtegrity

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices 13
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Threat Model

* Trusted kernel ¢/
* Wwe protect user space code

e Trusted binaries on disk ¢
* executable and libraries not modified by attacker

* Memory is untrusted x

* we try to fight off memory corruption attacks!

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

BINtegrity Overview

E binary

executable

BINtegrity

vV /% kernel OS

launch service
program A
Y corrupted?
runtime
process system call
Runtime Integrity Checking for Exploit Mitigation on Embedded Devices 15

9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

program

Process Runtime State

function call

system call

\ link address

System call return address ret__

System call information
— System call number

>

library

(system call wrapper)

\ return address

— System call arguments

Link address ret.

— specific to RISC
— register containing return address of last function invocation

Indirect jump target (on MIPS)

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices

9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

kernel
(system call handler)

Code Invariant Extraction

prologue SW Sra,

function { addiu Ssp,

Jal sub02

argument luil sal,

assignment | 1i s$az,

. lui $St9,
function call ,

jJalr $t9

link address offset)11OP

-0x28
O0x28-4

0x46
7
mmap@plt

A

disassemble
backwards

* Leightweight execution state (only registers)

* |nvariants = concrete values at end of execution

 Static analysis on the binary executable on disk

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

execute
forwards

17

Enforcing Integrity

1. Code Provenance
— where do function invocations originate from?
— only allow legit locations

2. Code Integrity

— is the call chain reflected by the binary?
— do the system call arguments match the invariants?

3. Symbol Integrity

— are called system call wrappers actually imported?

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Code Provenance

* Trusted Application Code Base (TACB)
— valid code regions of the process runtime image

* mapped text segments of a running process
* includes text segments of libraries
— fixated after linking stage

 Call chain has to originate from the TACB
— return addresses: both ret__and ret
— everything outside TACB is invalid

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Code Integrity

program code syscall wrapper
iﬁi $a3, 0x46 1w St0, Oxcafe
[li $a0, 7) (or $a3, t0)
Tui 5t9, mmap@plt (li 5v0, OxlOlD)
(jalr St9) syscall O
nop nop

* |Isthe predecessor of ret really a syscall?
— has the right syscall been invoked?

* Isthe predecessor of ret _really a control flow transfer?
— does the target of the branch match the callee?

* Do the actual syscall arguments match the invariants?
— does the syscall wrapper modify arguments?

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices 20
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Enforcing Symbol Integrity

mmap()
program > library

\ link address \ return address

* Dynamic linking uses function symbols

* Symbol mmap has to be
— exported by the library
— imported by the program

e Match

— symbol of function identified by return address
— imports of binary identified by link address

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation

Atacccass __|Techmigue __lbetemse

inject code in data segment code provenance

Code injection inject (and overwrite existing) code integrity (instruction
code in text segment mismatch)
use indirect jump gadget code integrity (target of

branch does not match)

symbol integrity (function not

Code reuse .
imported)
use gadget that calls library argument integrity (argument
function mismatch)
Runtime Integrity Checking for Exploit Mitigation on Embedded Devices 22

9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

lui $t9, mmap address

Indirect jump gadget

lui $t9, write@plt

1i $al0, 2 ma
—> jalr St9 P F
nop

 Violates call chain integrity
— register St 9 does not match invariant

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices 23
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Exploit Mitigation: Code Reuse

lui $a0, 12

Fixed jump gadget

lui sal0, 1
—> Jjal write *—)
nop

* Violates argument integrity
— runtime state value for Sa0 contradicts invariant

— write can only access stdout

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

24

Exploit Mitigation: Code Reuse

lui $Sa2, 7

Fixed jump gadget

lui $az2, 5
—> Jjal mmap *_)
nop

* Violates argument integrity

— runtime state value for Sa2 contradicts invariant:
RWX (7) vs. RX (5)
— mmap can only map read/write

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

25

Exploit Mitigation: Code Reuse

lui $St9, system address

Indirect jump gadget

beqg Sal0, locB

11 a0, 2 system
—> jalr St9 x >

nop

* Violates symbol integrity
— systemis not imported by the program

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

The BINtegrity System

Process Binary
Runtime Information Library 1...N
| o
— e
| o3 Emulation Engine ?gg\ ~
‘»99 p &9‘5 TACB
X :»6 W :
° 0? ELF Parser | Disassembler | Emulator nvariant
o> Cache

' | N

State Integrity Enforcer

BINtegrity Kernel Module

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

27

Performance Evaluation

* Buffalo Router WZR-HP-G450H (MIPS)

— Apache benchmark & nginx
— runtime overhead: 2.03%

* Galaxy Nexus Phone (ARM)
— AnTuTu benchmark
— measures Android runtime & 1/O subsystem
— runtime overhead: 1.2%

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

Internal Performance Evaluation

* Costly operations
— reading and parsing files
— instruction emulation
* Memory footprint
— Kernel module code
— Cache
 cache invariants for < 257 code points
* 16 bytes per code point
e requires total of 12KB per process

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

10% f

10° |

microseconds

10" |

10% ¢

Performance: Caching

(B cache hit
| cache miss

baseline TACB TACB TACB
+ +
Code Inv. Code + Svmbol Inv.

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

30

of Invariant Extractions

80

70

60

50

40

30

20

10

Performance: Invariant Extractions

1 1 1 1

Browser on ARM
Web Server on MIPS
1

0 20 40 60 80
Process runtime (seconds)

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

100

31

120

Conclusions

Cover-all-bases mitigation approach

* from payload injection, over hijacking control flow, to
running the payload
Practical

* no rewriting, no instrumentation, no configuration
* transparent to applications

Efficient
* only 2% overhead in application-level benchmarks

Open source
* download at http://www.bintegrity.org/

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

End

Runtime Integrity Checking for Exploit Mitigation on Embedded Devices
9t Conference on Trust & Trustworthy Computing, Vienna, August 2016

33

