

Berlin Institute of Technology

FG Security in Telecommunications

"Rise of the iBots: Owning a telco network"

5th IEEE International Conference on Malicious and Unwanted Software (MALWARE), Nancy, France, October 2010

Collin Mulliner and Jean-Pierre Seifert {collin,jpseifert}@sec.t-labs.tu-berlin.de

Agenda

- Introduction
- Contributions
- Cellular Challenges
- Command and Control
- Implementation / Evaluation
- Conclusions

Introduction

- Botnets are a serious security problem in todays Internet
 - Spam, fraud, identity theft, malware hosting, DDoS, ...
 - Anti botnet research is a big area of research
- Smartphone botnets
 - Vulnerabilities exist in all major smartphone platforms
 - Smartphones are powerful enough to host a bot
 - Smartphone-based botnets would offer additional "financial" gains for a botmaster
- Therefore, smartphone botnets are likely to appear and thus need to be studied

Contributions

- We show a cellular botnet architecture and evaluated it with several practical implementations.
- Solved some environmental challenges of such cellular botnets.
- Implemented and evaluated a P2P-based C&C mechanism for mobile phone botnets. Based on Kademila.
- Designed, implemented, and evaluated multiple SMS-based C&C mechanisms.
- We created communication strategies for mobile phone botnets. The strategies are designed to increase the stealthiness of mobile phone botnets.

Hijacking iPhones aka the iKee.B botnet

- Very simple botnet that is based on the iKee.A worm
 - Abused the default root password of jailbroken iPhones
 - Infected phones via ssh/scp
 - No user interaction required! (first one!)
 - Very simple HTTP-based C&C
 - download a shell script with new commands
 - Main payload was to steel SMS database
 - November 2009

Mulliner & Seifert, iBots, MALWARE 2010

Cellular Challenges

- Mobile phones present a number of challenges
- Challenges need to be addressed in order to design a mobile phone botnet
- These challenges are:
 - Absence of public IP addresses
 - Constant change of connectivity
 - Platform diversity
 - Communication costs

Absence of public IP addresses

- Most mobile operators put phones behind a NAT gateway
 - Lack of enough IPv4 addresses, etc...
- Most modern smartphones are equiped with WiFi
 - WiFi is used at home / office in order to have faster and cheaper communication
 - Wifi will put phones behind NAT again
- This is true even if operators assign public IPs to mobile phones
- Public IPs are the bases for direct bot to bot communication

Constant change of connectivity

- Mobile phones move around the physical world

 communication possibilities change
- Disconnected vs. GPRS vs . 3G / UMTS vs. HSPA vs. Wifi
- This counts for all bots in the network
 - Therefore this has to be considered

Connectivity	Hours
WiFi	Early morning (still at home)
GSM/3G	Morning (travel to work/school)
GSM/3G	Day time (while at work/school)
WiFi	Early evening (back at home)
GSM/3G	Early Night (going out)
WiFi	Night (bed time)

Communication costs

- In the world of mobile telecommunication most types of communication result in costs
 - packet-data, SMS, MMS, …
- Roaming will always create additional costs
 - Fix volume packages normally don't cover roaming
- <u>Costs have to be considered</u>
 - Increase stealthiness of bot
 - Keep to bot from communicating since packet-data my get disabled while roaming

C&C Communication Costs

- Mobile phone service cost money
 - SMS, packet-data, circuit switch data (CSD) calls, ...
- Costs could make a botnet detectable More easily, faster
- Need to analyze cost factor
 - When designing a C&C system for a mobile botnet
 - When building a detection system
- Interesting because of...
 - Service plans
 - Countries, roaming

C&C for mobile botnets

- Command and Control (C&C) is the most important part of a botnet
 - Botmaster uses it to control bots
 - Defenders (we/you) it presents THE attack vector
- We investigated two major pathes for C&C
 - P2P-based approach
 - This seems to be the "industry standard"
 - Works well when NATed
 - SMS-based approach
 - <u>This was chosen since we believe that SMS</u> <u>communication is hard to monitor and disrupt</u>

Peer-to-peer C&C

- Zombies communicate using IP (GPRS/3G/WIFI)
- Communication done via P2P network
 P2P network is used as rendezvous point
- The botmaster publish commands through the DHT

Mulliner & Seifert, iBots, MALWARE 2010

SMS C&C

- SMS seems to be the perfect C&C channel
 - Hard to monitor if not a mobile network operator
 - MNO maybe is not even allowed to monitor it
- Always available
 - World wide usable
 - GPRS/3G often disabled while roaming

The Short Message Service (SMS): Overview

- One of the basic services of the mobile phone service
- Normally used for "text messaging"
 - 160 ascii characters
- Can transport binary payloads
 - 140 octets per message
- In order to communicate sender only needs the receivers phone number
- Message are send in store and forward manner

 If receiver is not online, the message is kept in the network until the receiver comes online

SMS-only C&C

- Communication takes place in a tree model
- Advantages:
 - Botmaster only needs to communicate with root node
 - Bot communication is hard to observe
- Disadvantages:
 - Botmaster has to check if tree is still intact
 - Need to have full list of zombies
 - Broken tree needs to be repaired
 - Requires node list on zombie phones

SMS-HTTP hybrid C&C

- Improvement over SMS-only
 - Zombies don't need a peer list anymore
 - Repair phase is easier
 - Splits up botnet in smaller parts (harder to detect)

Mulliner & Seifert, iBots, MALWARE 2010

Communication strategies

- Communication is the most important part of a botnet
 - Especially for a mobile phone botnet
- Wrong communication will lead to detection of a mobile bot
 - A battery that drains to fast, a high(er) phone bill, ...
- IP
- Only do bulk data transfer over WiFi
- P2P traffic only over GPRS/3G (avoid detection by user)
- SMS
 - Consider not only volume but also destination
 - Group by operator/country minimize traffic between groups

Implementation

- Target platform was jailbroken iPhone
- Commands structure was build to fit both C&C methods

Content	Bytes
Signature length	1
ECDSA Signature	variable
Sequence Number	4
Command Type	1
Command	variable

- P2P
- Based on KadC (Kademlia)
 - Only implements the DHT part
- Command is transported in meta information of a hash
- SMS
 - Directly talks to GSM modem (via MITM technique)
 - SMS send via AT commands

Evaluation

- Installed bot(s) on a number of iPhones in the lab
- Sent commands to the bots and monitoring the actions
 Tests:
 - Run shell commands (ping...)
 - Download URL

- P2P
 - Bots connected via either WiFi or GPRS/3G
 - Special: Change sleep interval
- SMS
 - Special: add phone number to local database

Conclusions

- We investigated the specific challenges of mobile botnets
 Determined that a mobile bot can be easily build
- We designed and implemented multiple C&C approaches
 P2P, SMS, SMS-HTTP
- The SMS-HTTP hybrid approach to C&C seems promising
 - Stable, hard to detect an monitor
- Mobile telcos need to think about monitoring and fighting SMSbased botnets

Questions?

Thank you!

