
VirtualSwindle: An Automated Attack Against In-App
Billing on Android

Collin Mulliner
Northeastern University

Boston, MA
crm@ccs.neu.edu

William Robertson
Northeastern University

Boston, MA
wkr@ccs.neu.edu

Engin Kirda
Northeastern University

Boston, MA
ek@ccs.neu.edu

ABSTRACT
Since its introduction, Android’s in-app billing service has quickly
gained popularity. The in-app billing service allows users to pay
for options, services, subscriptions, and virtual goods from within
mobile apps themselves. In-app billing is attractive for developers
because it is easy to integrate, and has the advantage that the devel-
oper does not need to be concerned with managing financial trans-
actions. In this paper, we present the first fully-automated attack
against the in-app billing service on Android. Using our prototype,
we conducted a robustness study against our attack, analyzing 85 of
the most popular Android apps that make use of in-app billing. We
found that 60% of these apps were easily and automatically crack-
able. We were able to bypass highly popular and prominent games
such as Angry Birds and Temple Run, each of which have millions
of users. Based on our study, we developed a defensive technique
that specifically counters automated attacks against in-app billing.
Our technique is lightweight and can be easily added to existing
applications.

Categories and Subject Descriptors
K.6.5 [Software]: Security and Protection

General Terms: security

Keywords:Mobile Application; App Protection; Payment; Smart-
phone Security

1. INTRODUCTION
Since 2008, centralized mobile application markets for smart-

phones such as Apple’s App Store and Google’s Play Store have
radically changed the way applications are installed on mobile de-
vices. Users can now easily search for, read reviews on, and install
mobile apps from central repositories that come pre-configured on
the device. Furthermore, such centralized market places also pro-
vide the advantage that updating installed applications is simpler
and more efficient.
One recent development in the competition for providing new

appmarket-based services and, hence, creating new revenue streams
for app market providers is in-app purchasing. This feature first

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’14, June 4–6, 2014, Kyoto, Japan.
Copyright 2014 ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590335.

appeared in Apple’s iOS 4 in 2010, and allows users to pay for op-
tions, services, subscriptions, and virtual goods from within apps
themselves. In March 2011, Google followed suit, and provided a
service they term in-app billing [12].
The idea behind selling commercial services in the apps them-

selves is to allow users to first try out, use, and test an application
before they are offered the option of buying additional services. For
example, the first three levels of a game might be offered for free,
but the user might be asked to pay for the ability to activate and
access subsequent levels in the game. Similarly, some games al-
low users to play for free, but offer to improve the gaming experi-
ence by selling game-related tools to the player. For instance, in an
aerial dogfighting game, a fighter plane that is higher performance
might only be available to the player through an in-app purchase. Of
course, in-app purchasing is not only useful for game developers.
For example, ComiXology’s Comics is a free app, but the comics
themselves cost money and must be acquired through in-app pur-
chases.
In Android’s in-app billing, any developer can integrate the ser-

vice in their application without needing a special contract with
Google. The only requirements are the possession of a) a Google
play developer account, and b) a Google Wallet merchant account.
Hence, it is very easy for any developer to integrate in-app billing
functionality in her application, and she is not unnecessarily bur-
dened with having to go through a tedious registration process. For
Google, making in-app billing accessible and easy to use is impor-
tant because it receives a 30% sales commission on each in-app
purchase. The advantage for the developer, on the other hand, is
that she does not need to be concerned with credit card transactions
and billing cycles. Furthermore, the in-app billing service offered
byGoogle provides libraries that are straightforward to use, and that
can be integrated into existing apps with ease.
One important question with respect to in-app billing is how se-

cure these operations are. In a detailed document, Google discusses
the security and design of in-app billing, and provides best-practice
recommendations and guidelines to app developers who are plan-
ning to use the in-app billing service [13] on Android. One of the
recommendations is that, if practical, the developer should perform
signature verification to authorize Google-supported purchases on
a remote server, and not on the device itself. The explanation pro-
vided is that implementing purchase verification on a remote server
makes it difficult for attackers to break the verification process by
analyzing the application code. Another recommendation is that the
developer should obfuscate in-app billing code using a tool such as
ProGuard so that it is difficult for an attacker to reverse engineer
security protocols and other application components. Furthermore,
developers are encouraged to perform method inlining, construct
strings on the fly instead of defining them as constants, and use
Java reflection to call methods as further obfuscation techniques.

The key insight behind these obfuscation recommendations is that
using these techniques will help minimize attacks that give users
access to protected virtual goods while bypassing the in-app billing
implementation.
Note that the discussion in the in-app billing security and de-

sign recommendations provided to app developers assumes that the
majority of anticipated attacks will directly target application code
through reverse engineering and manual analysis. This is a time-
consuming and tedious task if the code is obfuscated. In fact, this
assumption also seems to be popular among some developers. For
instance, the discussion attached to Google’s official recommen-
dations document contains claims that it is not important to worry
about the small number of people who have the time and knowledge
to hack one instance of the app [13].
In this paper, we present the first fully-automated attack against

the in-app billing service on Android. Instead of taking the manual
approach of trying to reverse engineer, decompile, and patch indi-
vidual apps that use in-app billing services, our generic attack uses
a dynamic Dalvik instrumentation approach we have developed to
inject arbitrary code into a running process. Hence, we are able to
modify the behavior of any Dalvik-based Android app at runtime.
Our attack code is launched as a simple app named VirtualSwin-
dle. Our attack app runs in the background and, when invoked, au-
tomatically attacks every app using in-app billing that relies upon
on-device signature verification, allowing the attacker to access dig-
ital content and services without paying for them. Hence, the bar
for gaining illicit access to paid services in Android apps is signifi-
cantly lowered.
Using our prototype, we conducted a robustness study against our

attack, and analyzed 85 popular apps that made use of in-app billing.
Our findings show that 60% of the apps we analyzed employed on-
device signature verification, and were therefore easily crackable.
Only 36%of the applications that we tested took in-app billing secu-
rity seriously by performing the signature checks on a remote server
as recommended in the in-app billing developer guidelines. Note
that our paper does not show a weakness in Google’s in-app billing
architecture. Rather, it shows that many app developers do not seem
to be aware of how easily the in-app billing functionality in their
applications could potentially be bypassed if they do not rigorously
follow Google’s guidelines.
From an economic perspective, the amount an attacker could steal

in pirated in-app items can easily add up to several hundred dol-
lars, equivalent to the cost of a new Android phone. We found that
items offered through in-app billing cost between $1 and $99 (see
Figure 8), while a new Android phone (e.g., Nexus 5) costs around
$399. Hence, given an average observed item cost of $20 which we
draw from our empirical evaluation, an attacker need only steal 20
items to offset the cost of a new phone. In practice, attackers could
quite easily steal significantly larger sums.

This paper makes the following contributions.

• We present and describe a novel dynamic Dalvik instrumen-
tation approach. Our approach is able to instrument Dalvik
applications by intercepting and mapping Dalvik methods to
equivalent, attacker-provided native methods. Furthermore,
our tool is able to load and inject arbitrary Dalvik code into
a running process. Hence, we are able to change the behav-
ior of any Dalvik-based Android process at runtime without
tampering with application code signatures.

• Wepresent a novel attack against Google Play’s in-app billing
service on the Android platform. Our attack is generic and,
once launched, automatically attacks every application that

uses in-app billing on the targeted device that relies upon
on-device signature verification. As our attack is dynamic,
any static protection mechanism that uses code obfuscation
(e.g., reflection or variable renaming) is ineffective and eas-
ily evaded.

• We counter the popular developer folk wisdom that following
the simple obfuscation guidelines in the in-app billing docu-
mentation will significantly deter attackers from compromis-
ing their apps. We performed empirical experiments, testing
our attack on 85 popular apps that make use of in-app billing,
and found that 60% of the apps we analyzed were automati-
cally and easily crackable using our attack prototype. Among
the crackable apps were well-known, extremely popular apps
such as Angry Birds and Temple Run. We present detailed
reports on the in-app billing defenses implemented by these
85 popular Android apps.

• Wedeveloped a lightweight countermeasure that prevents fully
automated attacks like ours. Our countermeasure is based on
replicating and obfuscating code specific to the billing pro-
cess. The aim of the technique is to force attackers to perform
manual analysis of applications in order to crack them. Our
method can be integrated into existing applications with low
effort.

• We have posted an anonymous video of our attack demo on
YouTube at http://www.youtube.com/watch?v=Jx5GGI
NNGoc. We hope that the video will be educational for devel-
opers, and will motivate them to better secure their applica-
tions.

The rest of this paper is organized as follows. The next sec-
tion gives background information on in-app billing. Section 3 dis-
cusses the threat model we assume in this work. Section 4 describes
our automated attack against in-app billing. Section 5 presents our
evaluation and experiments. Section 6 presents and discusses our
lightweight countermeasure. Section 7 discusses related work, and
Section 8 concludes the paper.

2. BACKGROUND: IN-APP BILLING
In this section, we first provide background information on in-

app billing for the Android platform before presenting details of
our attack.

2.1 The In-App Billing Architecture
The architecture of the Android in-app billing service consists of

four components; three are mandatory and one is optional. The first
component is the Android Play Store application, which is used to
download applications from the Play Store. The Play Store app ex-
poses the MarketBillingService interface that is used by appli-
cations to interact with the billing system. The second component
is the back-end Play Store server that is hosted by Google. The aim
of the Play Store server is to perform the actual financial transaction
requested by remote apps. The third component in the architecture
is the application on the device that uses the in-app billing service.
The application communicates with Google’s Play Store by using
the MarketBillingService API. The fourth optional component
is a server-side service that can be deployed by the application de-
veloper. The application developer can use this optional service to
provide services for users of his apps such as content distribution
or data storage. In the context of in-app billing, the developer can
also use it to authorize in-app billing transactions. Figure 1 depicts
the architecture of the in-app billing service.

http://www.youtube.com/watch?v=Jx5GGINNGoc
http://www.youtube.com/watch?v=Jx5GGINNGoc

Billing responses

(signed)

Android Market

Application

Android Market

Server
Application

Server

(optional)

Binder

Application

Billing requests

MarketBillingService

Figure 1: The Android in-app billing architecture [12].

2.2 In-App Billing: Developer’s Perspective
Developers that wish to include in-app billing services in their

apps need to perform three basic steps.

1. Add in-app billing code to their application. This is the
code that talks to the Play Store app on the Android device
that provides the in-app billing service.

2. Register items in the Android Play Store. These items are
the digital services that users can purchase inside the applica-
tion. For example, an artifact could be the ammunition that
is needed for a powerful weapon that the user has picked up
in a game. Note that every item that can be purchased has to
be registered on the Play Store back-end server so that it can
be sold as a digital service through in-app billing.

3. Generate a public key pair. For in-app billing to be acti-
vated, a private key needs to be uploaded by the developer
to the Play Store server. It is then used to sign each in-app
purchase. The public key is embedded into the application
by the developer, and is used to verify the signature of the
purchase data that is provided by the Google in-app billing
service.

Once these steps are completed by the developer, in-app billing
can be used in the app. Note that applications do not need to go
through any testing process, and they do not need any special per-
missions from Google to be able to use in-app billing. Clearly,
Google, as the in-app billing provider, is interested in making this
process as easy and as low-overhead as possible for developers.

2.3 Purchasing an Item with In-app Billing
An application that has in-app billing functionality uses two in-

terfaces to the Android Play Store app. The main interface is the
sendBillingRequest method call. This method takes a Bundle
(i.e., an object that holds key-value mappings) as an argument, and
returns another Bundle as the result. The second interface is a broad-
cast receiver. The broadcast receiver is used to receive Intents,
which are abstract descriptions of an operation to be performed,
from the Android Play Store app. Note that the in-app billing pro-
cess is highly asynchronous and, therefore, all state changes are sig-
naled via Intents.
To purchase an item, three steps have to be taken. First, the appli-

cation issues the REQUEST_PURCHASE command using the send-
BillingRequest method. The Play Store replies with a Bundle
that contains a REQUEST_ID and a PendingIntent, which is a spe-
cial Intent that is used to display the payment screen. Figure 2
shows a screenshot of the payment screen from the popular game
Temple Run.

Figure 2: Payment screen from the game Temple Run.

Once the user completes the payment process, the Play Store
application sends an IN_APP_NOTIFY Intent to the application,
and indicates that the payment has been successfully received. The
application responds with the GET_PURCHASE_INFORMATION com-
mand. The Play Store application then follows with a PURCHASE-
_STATE_CHANGED Intent. This Intent contains detailed infor-
mation about the completed in-app purchase. That is, it contains
purchase information that has been generated by the Play Store server,
and that has been signed with the developer’s private key.
After the application receives the signed purchase information, it

checks the signature of the data sent by the Play Store app, and con-
firms the sale with a CONFIRM_NOTIFICATIONS command. At this
point, the purchase is now complete. Figure 3 shows the command
and Intent exchange between an application that uses in-app billing
and the Android Play Store app.

Android Market

Application

Application

sendBillingRequest (REQUEST_PURCHASE)

Bundle (RESPONDS_CODE, PURCHASE_INTENT, REQUEST_ID)

Intent (IN_APP_NOTIFY)

sendBillingRequest (GET_PURCHASE_INFO)

Bundle (RESPONDS_CODE, REQUEST_ID)

Intent (PURCHASE_STATE_CHANGED)

sendBillingRequest (CONFIRM_NOTIFICATIONS)

Bundle (RESPONDS_CODE, REQUEST_ID)

Figure 3: Method calls and Intents for a payment [12].

3. THREAT MODEL
In this section, we describe the threat model that we assume for

our attack against in-app billing. We first discuss the motivation of
the attacker, and then describe the prerequisites for the attack.

3.1 The Attacker
The attacker is the owner of an Android device, and is interested

in using in-app services without paying for them. Hence, by launch-
ing an attack, the attacker aims to automatically subvert the in-app
billing process. The defenders are a) the in-app billing service on
the device that is responsible for in-app purchases and that receives
a commission on each sale, and b) the application developer who is
interested in making her application as difficult to crack as possible
(e.g., but following security recommendations in the in-app billing
documentation [13]).

3.2 The Prerequisites
For our attack to succeed, there are two prerequisites that need to

be fulfilled. The first prerequisite is that the attacker has full con-

trol over her own device, and that she can gain root access. We
believe that this assumption is realistic, as rooting an Android de-
vice is straightforward, and a wealth of documentation on the topic
is available. Furthermore, popular tools such as SuperOneClick [6]
allow technically unsophisticated users to automatically root An-
droid devices. Note that unlike Apple’s iOS, Google and most An-
droid device manufacturers tolerate users acquiring root access to
their devices. For example, HTC has an official site to unlock the
bootloader of their devices [14]. An unlocked boot loader allows
one to easily root a phone by installing a modified firmware such
as CyanogenMod [7].
Rooting a device normally consists of installing an su (superuser)

binary with setuid root permissions in /system/xbin. This pro-
cess is as simple as downloading a ZIP archive to the /sdcard path
of an Android device, and installing its contents using the Android
recovery boot loader that is present on all devices.
Also, note that rooting an Android device does not mean that

the device’s security guarantees are necessarily void. For example,
SuperSU [4] has aGUI application that allows the user to selectively
give super-user privileges to individual applications. Thus, the user
keeps control over which applications have root privileges on her
device.
The second prerequisite for a successful automated attack is that

the application developer performs signature verification on the de-
vice using the functionality provided byGoogle’s in-app billing ser-
vice. As our experiments in Section 5 demonstrate, this assumption
is realistic based on empirical measurements. That is, the majority
of the apps we analyzed – including highly popular games such as
Angry Birds – performed on-device signature verification, relied on
existing libraries for this task, and were therefore vulnerable.

4. ATTACKING IN-APP BILLING
Our attack against in-app billing is straightforward, and works by

emulating and subverting the MarketBillingService inside the
Android Play Store application on the device itself. The Market-
BillingService has one function, sendBillingRequest, that is
exposed to applications as an Inter-Process Communication (IPC)
endpoint. As discussed in Section 2, sendBillingRequest takes
a Bundle as an argument, and returns another Bundle as a result.
In the attack, we dynamically subvert and modify the Play Store

application on the device. In other words, at runtime, we replace the
sendBillingRequest method with our own code. Our version
of sendBillingRequest then generates the answer Bundles and
Intent that make the calling app believe that the purchase was
successful.
For our attack to be successful, we only have to overcome a sin-

gle security check located inside the in-app billing-enabled victim
app. In particular, this check is the signature verification of the
purchase data returned to the application by the Android Play Store.
To overcome the signature check, we replace the standard Dalvik li-
brary method java.security.Signature.verifywith our own
method that always returns true, indicating success. Thus, we can
disable signature verification with ease if the programmer has cho-
sen to do on-device verification, and relies on the provided func-
tionality. Note that we replace the verification function globally on
the device. Hence, we do not need to attack vulnerable applications
individually. In order to not break signature verification for the rest
of the device we only return true if the input is our fake signature.
To be able to launch a dynamic attack against the in-app billing

service, we had to develop novel tools for the dynamic instrumenta-
tion of Dalvik binaries. In this section, we describe the implemen-
tation of our attack and the tools we developed in detail.

4.1 Dynamic Dalvik Instrumentation
As a part of our attack, we created a dynamic Dalvik instrumenta-

tion approach, and implemented a library called libddi. Our library
consists of several components, and allows us to intercept and map
any Dalvik method to an alternative native function implementation
provided by the attacker. Furthermore, we are also able to inject ad-
ditional, arbitrary Dalvik code into a running process, and perform
full dynamic instrumentation of any process that is running on the
Android platform.
The Dalvik Virtual Machine on Android devices supports the in-

vocation of native code that is loaded from shared libraries using
the Java Native Interfaces (JNI) mechanism. The basic idea behind
our instrumentation approach is to abuse the JNI layer of Dalvik,
and to modify any interpreted Dalvik method and to replace it with
a corresponding native variant that is provided by the attacker.
In the following, we describe the main features of our instrumen-

tation tool in more detail, and discuss some of the technical chal-
lenges we faced.

4.1.1 Library Injection
Our instrumentation tool is bootstrapped through a well-known

library injection technique (i.e., [5]) that we had to adjust for the
ARM platform. This technique is based on executing a few instruc-
tions on the stack that invoke dlopen(2), and that load the shared
library into the process. The code is executed once the dynamic
linker loads the shared library, and executes the library’s init func-
tion.

4.1.2 Redirecting Dalvik Methods to Native Code
Just like the Java VM, the Dalvik VM supports calling native

code loaded from shared libraries using the JNI mechanism. The
key insight behind our instrumentation approach is that Dalvik calls
can be replaced with native calls. In fact, this is functionality that
has to exist in the VM as a feature to be able to implement and
provide JNI functionality.
A method in the Dalvik VM is represented by a method struct.

The method struct contains several fields that are related to the ac-
tual code being executed. The insns field points to theDalvik byte-
code if this is a Dalvik function, and the nativeFunc field points to
a JNI helper function if themethod is native; in this case, insnswill
point to the actual native code. Furthermore, the registersSize
and jniArgInfo fields contain information related to method pa-
rameters, and the accessFlags field holds information concerning
method visibility (i.e., public vs. private) and whether the method
is implemented using native or managed code.
To modify an existing method in Dalvik and map it to a different

native call, all of these fields must be adjusted accordingly. For
example, the jniArgInfo field has to be set so that the JNI helper
will scan the method signature to determine how the arguments are
passed, and the registersSize field has to be adjusted with the
number and type of arguments. Furthermore, the accessFlags
have to be modified to indicate that the method is native. Finally,
the actual function pointer has to be set to the field insns, and the
field nativeFunc has to be pointed at the JNI helper function. The
last step is performed using the dvmUseJNIBridge function in the
Android libdvm library.
Figure 4 depicts an example of how the existing verify method

of the java.security.Signature class can be redirected to an
arbitrary native implementation. In the first step, a handle to the
class java.security.Signature has to be obtained using the
Android dvmFindLoadedClass function. In the second step, a
method handle has to be acquired for themethod in question. This is
done by invoking the libdvm function dvmFindVirtualMethod-

c l s = dvmFindLoadedClass (” L java / s e c u r i t y / S i g n a t u r e ; ”) ;
Method *m = dvmFindVi r t u a lMe thodHie rByDesc r i p t o r (

c l s , ” v e r i f y ” , ” ([B)Z”) ;
m−>r e g i s t e r s S i z e = 2 ;
m−>j n iA r g I n f o = 0x40000000 ;
m−>a c c e s s F l a g s = m−>a c c e s s F l a g s | 0x0100 ;
dvmUseJNIBridge (m, v e r i f y) ;

Figure 4: An example of redirecting aDalvikmethod to native code.
Here, the method boolean java.security.Signature.veri-
fy(byte[]) is hijacked.

i n t v e r i f y (JNIEnv* env , j o b j e c t obj , j o b j e c t b y t e a r r a y)
{

re turn 1 ;
}

Figure 5: Native code to replace java.security.Sig-
nature.verify(byte[]) with a function that always returns
true.

HierByDescriptor and passing the method’s name and signature.
As described above, themethodmeta data is adjusted and redirected
to the arbitrary, native implementation of verify.
Figure 5 shows the replacement function for the method java-

.security.Signature.verify, which follows the JNI call stan-
dard. The first argument is the JNI environment. This is followed
by the instance object and the actual method parameters – in this
case, a byte array.

4.2 Loading Arbitrary Dalvik Classes into an
Existing Process

The ability to redirect any existing Dalvik method and map it to
an arbitrary native call is useful and powerful in terms of dynamic
instrumentation. However, our instrumentation approach also al-
lows us to load additional, arbitrary Dalvik classes into an existing
process. In other words, we are able to write instrumentation and
attack code in Java. Clearly, being able to write attack code in Java
has the advantage that it is easier to build new functionality as it
makes it straightforward to interact with existing Dalvik libraries.
In comparison, developing code in C/C++ has a much higher over-
head.
To load classes into a running process, the Dalvik executable

(known as aDEX file) has to be loaded from disk. This is done using
the openDexFile function, provided byAndroid’s libdvm, through
our libddi instrumentation library. Second, we have to define the
class and tell the class loader which class to load from the DEX
file. This is done by calling the libdvm function defineClass.
After the class has been loaded, it can be used just like any other
class in the VM. One can create new instances, dispatch methods to
those instances, and also call static methods.
Figure 6 depicts our instrumentation library libddi in operation.

After the library is injected into a running process, it intercepts and
patches methods that the attacker wishes to instrument, and then
loads attacker-provided Dalvik classes into the target process.

4.3 Calling Patched Methods
Once a Dalvik method has been intercepted and redirected to a

native method provided by the attacker, there exists no direct path
to call the original method. That is, every time the method is looked
up through standard Android functions such as dvmFindVirtual-
MethodHierByDescriptor, the method structure that is returned

Dalvik Classes

libdvm

libc, libz, libjpeg,...

benign process

libdvm

libc, libz, libjpeg,...

libddi

Dalvik Classes

libddi injected

libdvm

libc, libz, libjpeg,...

libddi

Dalvik Classes

DDI

Dalvik Classes

ddi classes loaded

Figure 6: The DDI instrumentation library in operation. The be-
nign process consists of native libraries, the Dalvik VM, and the
Dalvik classes. In the first step, our libddi library is injected into
the process. Then, libddi uses the Dalvik VM to change the Dalvik
methods to point to native code. Once the native code is executed,
arbitrary Dalvik classes can be loaded and executed.

points to our alternative native method implementation. The only
way to call the original, replaced Dalvik code is to patch the internal
method structure to make it point back to the original implementa-
tion.

4.4 Obtaining a Context
Unfortunately, interacting with the Android system from the in-

strumented code is not always straightforward. In many instances,
an android.content.Context class is needed. A Context ob-
ject allows the sending of Intents using the sendBroadcast
method. Normally, a developer does not need to be concerned with
obtaining a handle on the Context object because every Android
application is a subclass of android.content.Context. How-
ever, if additional attacker-provided classes are loaded into a run-
ning process, the loaded classes do not have a reference to the exist-
ing Context instance, and hence cannot interact with the Android
framework.
We had to design two techniques for obtaining a reference to the

current application’s Context object. These techniques work well
in practice, and allow us to launch successful attacks against the
in-app billing infrastructure on the device. In the following, we
describe the two techniques we use.

4.4.1 Using the ActivityThread
If the injected code is running inside an application that is cur-

rently in the foreground, we use a static method belonging to the
ActivityThread class to obtain a Context reference by calling
the method currentApplication. The ActivityThread class
manages the main thread of an Android application process. This
technique is generic, and works in most situations. Furthermore, it
can be implemented purely in Java.

4.4.2 Scraping the Instance Object
Unfortunately, in some cases the application does not run in the

foreground. Hence, the ActivityThread approach does not work.
If the instrumented method is not a static method, the method call

always has the instance object as the first argument passed to the
method. We now have multiple options for acquiring a Context
reference depending on what kind of class we are dealing with.

a) If the method is part of a class or a subclass of Context, then
the instance object provides a valid Context. Well-known
subclasses of Context are the three cornerstones of the An-
droid application framework, namely Service, Activity,
and Application.

b) If the class is an inner-class of any one of those classes, we
simply need to access the enclosing class. The Java compiler
generates a synthetic member field for such purposes named
this$0 that allows us to obtain a Context reference.

c) If the class has any member variable that stores a reference to
a Context, this variable can be accessed to obtain a handle
to that Context. In fact, this is frequently used by applica-
tion developers as they also need an easy method to acquire a
Context object to be able to interact with the Android frame-
work.

All of the three above methods can be implemented using reflec-
tion using Java or C/C++. However, if the Context is acquired via
C/C++, it has to be transferred to the Java world through the JNI
interface.

4.5 Attacking In-App Billing
The implementation of the automated attack against in-app billing

is based on the dynamic Dalvik instrumentation approach we dis-
cussed in Section 4.1. That is, we use libddi to subvert in-app
billing.
In the first step, the com.android.vending process is hijacked

by injecting libddi into the process, where com.android.vending
is the Android process that is responsible for authorizing in-app
purchases. To interact with the application process and the Dalvik
VM, we need our injected code to execute in an application thread.
Therefore, we hijack a common, frequently called function. We
determined that epoll_wait, a low-level function that waits for
events on a set of file descriptors, is a suitable choice since it is
called frequently by the Android framework, and thus by every ap-
plication. Once our version of epoll_wait is called, the in-app
billing method sendBillingRequest is redirected to our own na-
tive implementation.
In the second step, whenever sendBillingRequest is invoked,

our attack code is executed. The attack code then loads Dalvik
classes that we have written into the vending process. The ability to
use Dalvik classes in the attack is important because we need to be
able to communicate with in-app billing victims using the standard
Android communication mechanisms (e.g., Intents).
Our Dalvik attack engine is responsible for emulating the An-

droid billing process, and has four basic components. A handler
component first parses the request received via sendBillingRe-
quest from the in-app billing victim application. Here, we extract
application-specific values such as the purchased item names. A
second component then generates the appropriate answers based on
the extracted request data. A third component is responsible for
sending back answers to the victim app as Bundles and Intents.
Finally, a fourth component provides a state tracking mechanism
that is used by our native attack code to query the state of the Dalvik
component of the attack.
Patching java.security.Signature.verify is done by load-

ing a small native library into the zygote process. Note that on An-
droid systems, this process is automatically mapped into all other
Dalvik processes. Hence, using this approach, our attack code only
needs to be injected once into the zygote for it to be automatically
propagated to every process running on the system.

4.6 Launching the Attack
The attack against in-app billing is executed as soon as the vic-

tim application sends a REQUEST_PURCHASE request through the
sendBillingRequest call to the Play Store application. Our na-
tive, subverted implementation of sendBillingRequest operates
as a central dispatcher. It receives requests from the victim appli-
cations as Bundles, and forwards these Bundles to our request
handler in the attack engine. The attack consists of four main steps.

4.6.1 Interception of REQUEST_PURCHASE
Once the purchase request is intercepted, the corresponding

Bundle is parsed and relevant data such as the package name and
the item ID are extracted. REQUEST_PURCHASE is a special request
in the context of our attack in the sense that it indicates a valid and
legitimate purchase request from the victim app. Hence, the result
that is returned to the victim has to make sense. Therefore, we pass
this request and its parameters to the original, legitimate implemen-
tation of sendBillingRequest. We then take the answer gener-
ated by the Play Store app and pass it back to the victim app. The
Play Store then builds a PendingIntent as shown in the example
in Figure 2.

4.6.2 Sending IN_APP_NOTIFY
This Intent is be sent to indicate that the purchase was carried

out by the user. The Intent needs to be delayed until sendBil-
lingRequest has returned and the victim application has a defined
state. Therefore, we create a thread and delay it for five seconds
before sending the Intent to the victim application. We chose five
seconds as the delay time as it worked well in our experiments.

4.6.3 Handling GET_PURCHASE_INFORMATION
The handling of this request is an important part of the attack.

Here, we generate the JSON object that contains all the purchase
information such as the product ID, the state of the purchase, and
the order ID.
Under normal conditions, this JSON object would be generated

and signed by the remote Play Store server. However, since we are
not really performing a purchase and are onlymaking the victim app
believe that the purchase has been successful, we need to generate
this JSON object ourselves. For the attack to succeed, we do not
care about having a valid signature and, hence, fill the signature
field with a fake signature that we Base64 encode. This is done to
ensure that the field passes the Base64 decoding check in the victim
app.
The two fields inapp_signed_data and inapp_signature are

sent via a PURCHASE_STATE_CHANGED Intent back to the victim
application. Figure 7 shows a real-world example of data that is
sent in the inapp_signed_data field for the popular game Tem-
ple Run.

4.6.4 Confirming the purchase
If satisfied with the signature verification step, the victim app

can now send a CONFIRM_NOTIFICATIONS Intent through the
sendBillingRequest method. We can then detect that our attack
has succeeded. Note that as we intercept and subvert the on-device
signature verification libraries, any app that relies on this function-
ality will be automatically cracked.

4.7 Dealing with the Play Store User Interface
Our attack against in-app billingworks completely automatically,

without any user interaction, immediately after the REQUEST_PUR-
CHASE Intent is received by our subverted version of sendBil-
lingRequest. Under normal conditions, whenever an in-app pur-
chase succeeds, the payment dialog shown by the Play Store app

{ ” nonce ” : −9149971711919728712 ,
” o r d e r s ” :
[{

” n o t i f i c a t i o n I d ” : ”1” ,
” packageName ” : ”com . imang i . t emp l e r un ” ,
” o r d e r I d ” : 6120396686557988119 ,
” p u r c h a s e S t a t e ” : 0 ,
” purchaseTime ” : 0 ,
” p r o d u c t I d ” : ”com . imang i . t emp l e r un . i a p . co i npack . d”

}]
}

Figure 7: Automatically-generated purchase data for the game
Temple Run.

is closed as soon as the payment process is completed. However,
since our attack does not actually complete the payment process
in the Play Store application, pressing the back button in the Play
Store app to go to a different view would normally cancel the pur-
chase. Hence, a CANCEL message would be sent to the victim app.
In our experiments, we observed that some apps will cancel an in-
app purchase if they receive a CANCEL message from the Play Store
after a transaction. To mitigate this problem, we also patched the
sendResponseCode method in the Play Store application to sup-
press the CANCELmessage from being sent when the payment dialog
is closed via the back button.

4.8 Cheating with In-Game Currency
We adapted our attack for all games that have in-game currency.

In such apps, a currency is defined in the game that allow users
to save and purchase in-game items. For example, a magic sword
might cost the player 100 gold coins, and these gold coins might be
purchased using traditional currency through in-app billing. With
this simple extension, we can create automated loops to continu-
ously buy currency for cheating purposes, or for jumping ahead in
the game’s high-score rankings.
This extension requires sending the IN_APP_NOTIFY Intent and

restarting the in-app purchase process as soon as the last step of pay-
ment is completed. Hence, an in-app item can be bought hundreds
of times without having to manually interact with the user interface
for each purchase.

4.9 Making the Attack Easy to Use
To make the attack prototype easy to launch and use, we created

an Android app called VirtualSwindle that an attacker can launch
with the simple touch of a finger. The app runs in the background,
and automatically cracks every in-app billing app that relies upon
on-device signature verification as discussed in the previous sec-
tions. The reader is referred to an anonymous YouTube video lo-
cated at http://www.youtube.com/watch?v=Jx5GGINNGoc for
a demonstration of the attack in action.

5. EVALUATION
The aim of our evaluation is to determine how effective our auto-

mated attack would be against popular apps that use in-app billing,
and to gain insights into how security-aware app developers are to-
day. We tested VirtualSwindle on 85 apps from the Google Play
Store. Furthermore, we manually analyzed and reverse engineered
these apps to determine what kinds of security precautions, if any,
they were taking.
In the following, we describe how we selected the in-app billing

apps we tested for robustness, how we executed the tests, and how
we performed our security analyses.

5.1 Ethical Considerations
Checking popular applications to see if their in-app functionality

can be bypassed could be considered an ethically sensitive issue.
Clearly, one question that arises is if it is ethically acceptable and
justifiable to test an attack tool on real applications. We believe
that realistic experiments are the only way to reliably estimate suc-
cess rates of attacks in the real world. Unfortunately, criminals do
not have any second thoughts about discovering vulnerabilities in
the wild, or launching attacks. We note that VirtualSwindle only
performed a client-side attack on each application, and the attack
had no server-side effect on the tested applications (i.e., an in-app
transaction was never really completed). Furthermore, if the attack
succeeded, we stopped interacting with the app, and made sure that
no server-side logs were affected (e.g., online high scores). Also,
the vulnerable apps we tested only had in-app currency that was
generated on the device, and the virtual currency was deleted once
the app was uninstalled.

5.2 Selection Process for In-App Billing Apps
Determining if an application is using in-app billing is not a

straightforward process. Although in-app billing does require a spe-
cial permission (i.e., com.android.vending.BILLING), it is not
possible to search the Play Store for all apps that support this fea-
ture. Furthermore, just because the permission is present and the
application asks for it does not necessarily mean that the applica-
tion uses in-app billing.
One possible, straightforward idea to discover which apps use

in-app billing would be to crawl the Play Store and to look at the
descriptions of the apps in the Play Store. However, app devel-
opers are not obliged to disclose that they have in-app billing en-
abled in their applications. Furthermore, currently, Google does
not make an effort to mark applications in the Play Store as being
in-app billing enabled.
To select applications for testing, we developed some simple heuris-

tics to narrow down the selection choice to apps that had a high
probability of having in-app billing functionality. To determine if
an app has in-app billing services, we first check if the billing per-
mission is present. Furthermore, if we determine that an application
has any of the following three characteristics, we decide that it will
likely support in-app billing.

a) The game has an in-app currency, and the player has to ac-
quire it. It is likely that she has to buy it through in-app
billing.

b) The game has multiple levels. In many games, in-app billing
can be used to buy additional levels.

c) The game is ad-supported. In many cases, in-app billing can
be used to remove ads, or to upgrade to the full version.

Using these simple heuristics, we selected 100 candidate apps
based on popularity, and downloaded them from the Play Store’s
Top Free and Top Grossing categories.
Once an application is installed and executed, we can observe

calls to the vending API by intercepting sendBillingRequest
invocations to determine if the app is indeed using in-app billing.
However, once again, this is not always as straightforward as one
might expect. About half of the applicationswe tested use the CHECK-
_BILLING_SUPPORTED request during startup to determine if the
device is capable of supporting in-app billing. Unfortunately, the
other half check for in-app billing only just before the purchase task
is about to be executed.
Hence, we had to manually interact with most of the apps to de-

termine if they were in-app billing capable. This entailed playing

http://www.youtube.com/watch?v=Jx5GGINNGoc

Figure 8: Purchasing coins in the game Big Win Slots.

many games and attempting to, for example, buy digital content.
In 85 apps, we were able to trigger the in-app billing functionality,
and used our attack prototype on these apps. Note that our list of
apps includes highly popular games such as Angry Birds, Temple
Run, and Flow Free that have millions of users. For instance, Angry
Birds is reported to have 500 million users.
In our test set, we observed item prices between $0.99 USD and

$99 USD. It is not uncommon for games to sell currency packs for
differing amounts. Figure 8 shows a screenshot from the game Big
Win Slots where the user is prompted to buy in-game coins in ex-
change for real currency. In contrast, the removal of ads and game
levels usually cost around $2.00 USD.

5.3 Attack Experiments
Once we had selected 85 popular apps that were confirmed to use

in-app billing, the next step of the evaluation was to determine how
effective our attack was against these applications. If our attack
was successful (i.e., the fake in-app purchase worked), we quit the
application, and restarted it to see if it remembered the items that
we had purchased. If, on the other hand, the application was not
vulnerable to our attack, we inspected the Android Debug Bridge
(ADB) log to identify countermeasures the application might have
implemented. Furthermore, we reverse engineered the application
to gain a deeper understanding of its countermeasures.
In our experiments, we usedmultiple indicators to determine if an

application was vulnerable. First, an obvious indicator of a success-
ful attack is positive visual feedback from the app after a purchase
that indicates that the items have successfully been purchased. Fig-
ure 9 depicts the purchase confirmation messages from three appli-
cations drawn from our test set. Second, we observed the log output
from our code that runs inside the vending process. The log shows
us the exact state of the purchase action. Third, the log output of our
patched signature verification function served as a useful indicator
for on-device verification.
If an app was not vulnerable, the first obvious indication that

the attack had failed was that there was no visual confirmation of
success. Furthermore, the log message for the CONFIRM_NOTIFI-
CATIONS command would be missing, and there might be general
log messages indicating the use of remote signature verification.
Note that if the signature verification is performed remotely, the
log file for the subverted java.security.Signature.verify
method will be empty.
We manually ran VirtualSwindle for each test app. To trigger

the in-app purchase request, in some cases we had to go through a
lengthy interaction with the app in question.1

1We note that many virtual zombies were killed in the course of this
research.

Figure 9: Purchase confirmations from three different apps: Hill
Climb Racing, Coin Dozer, and Temple Run.

5.4 Analysis of Security Countermeasures
Of the 85 apps we analyzed in our experiments, 51 (60%) were

automatically cracked by VirtualSwindle. 33 apps were not cracked
automatically, and we determined that one application still con-
tained the Play Store test item that is provided for testing purposes
(android.test.purchased).
One of the goals of our evaluation was to investigate to what

extent popular apps follow Google’s in-app billing security recom-
mendations [13]. For our test set, we first downloaded all 85 appli-
cations to our test device. Note that this was not straightforward for
all apps: three apps used App Encryption, a content security feature
that was introduced with Android 4.1. To bypass App Encryption,
we had to execute the applications and manually copy the decrypted
files from the /mnt/aesc directory to the /sdcard directory before
we could download them to our test device.
Second, we disassembled each of the 85 applications using Apk-

tool [1]. Apktool unpacks the APK files and disassembles the DEX
classes, among other functions. We were then able to manually
analyze the disassembled applications and investigate the security
countermeasures employed by the applications. The reverse engi-
neering and analysis effort was largely manual, but we did use some
simple guidelines.

5.4.1 Locating the billing code
In many cases, obfuscated apps will still contain the well-known

names of the calls to the Android framework and imported inter-
faces (e.g., sendBillingRequest).

5.4.2 Checking if Java reflection is used
If sendBillingRequest cannot be located, it is likely that the

application is using Java reflection [16] to dynamically resolve classes
and methods to further obfuscate the application. The use of reflec-
tion can often be quickly ascertained by checking the code for the
string “reflect”.

5.4.3 Checking for the use of dynamic strings
Google advises developers to manually assemble strings that are

related to in-app billing such as inapp_signed_data and inapp-
_signature [13]. If these strings are not found, it is likely that the
application is constructing them on the fly, or is obfuscating them
in some other way.

5.4.4 Checking network traffic
For all applications in our test set that we were not able to crack

automatically, we also analyzed the network traffic they produced
during the purchase process. To accomplish this, we installed and
executed tcpdump directly on the Android device.

5.5 Findings and Key Insights
Table 1 in the Appendix summarizes our key findings for each of

the 85 apps that we analyzed. It lists whether or not the application
is vulnerable to our automated attack, and the type of countermea-
sures we identified in each application.
Seven of the vulnerable applications in our test set included coun-

termeasures such as code obfuscation and reflection. We discov-
ered these countermeasures only after manually analyzing the apps,
since our attack was dynamic, and thus not affected by such tech-
niques.
One finding that was surprising was that BigWin Slots, a popular

app with over one million installs, does not perform any signature
verification at all. Based on our testing, we knew that the appli-
cation was vulnerable. However, we discovered that the on-device
signature was never triggered during these tests. Further investiga-
tion revealed that the developer, in fact, was not checking for valid
purchase signatures.
In our test set, we found evidence that some developers indeed

take in-app billing security seriously. For example, Grab Money
Slots uses on-device signature verification, but implements it in
native code. Naturally, such code is more difficult to attack au-
tomatically. As another example, Outdoor Atlas, an app that pro-
vides access to maps that can be purchased via in-app billing, per-
forms signature verification on a remote server, and does not deliver
maps to the device there until the purchase had succeeded. Clearly,
the developers of this app were following the remote signature and
content distribution recommendations in the Google in-app billing
guidelines [12].
We found one app, KungFu, that still contained the in-app billing

test item (android.test.purchased). We conclude that the de-
veloper probably evaluated in-app billing, added in-app billing func-
tionality, but had not yet enabled it.
All other non-vulnerable applications implemented server-side

signature verification. In some rare cases, only server-side signa-
ture checks are performed. In most cases, though, the server-side
signature check is an addition to the on-device signature checks.
Hence, some developers seem to be doing a good job in securing
their in-app functionality.
We also observed that in a large number of applications, the dis-

assembled billing code was identical to the code used in other ap-
plications. We discovered that this was because many applications
were using the in-app billing example code provided by Google.
Note that as a security precaution, Google explicitly warns develop-
ers against reusing the provided example code as-is. Specifically,
38 of the vulnerable apps we analyzed reused Google’s example
in-app billing code verbatim, while 15 of the vulnerable apps not
vulnerable to our attack also showed evidence of code reuse.

6. COUNTERMEASURES
After determining that most countermeasures we found during

our evaluation did not stop our attack, we investigated possible
countermeasures. We recognize that there is no silver bullet de-
fense against offline attacks based on manual reverse engineering.
The only way to counter static code patching attacks is to design ap-
plications in a way that they require heavy interaction with a server
component, thus making client-side patching approaches useless.
But many applications do not require a server component for their
actual functionality and, therefore, developers do not wish to invest
time and money to include a server component in their application.
Therefore, we investigated ways to improve the client-side security
of the billing process against automated attacks. We focused on
methods that are lightweight, easy to adopt, and do not incur the
additional costs of a server component.

Our work shows that the use of reflection and obfuscation do
not protect against instrumentation-based automated attacks. The
weak point of the applications cracked by our automated attack is
the easily identifiable and patched purchase data signature verifica-
tion routine. We concluded that a viable working countermeasure
is to not rely on signature verification code provided by the Android
libraries.

6.1 Hardening the Signature Check Code
A basic assumption of instrumentation-based automated attacks

is that all important symbol, class, method, and attribute names are
known to the attacker. This is especially true if the names are part of
a standard API. Our proposed defense against VirtualSwindle-like
attacks is to introduce artificial diversity by replacing fixed names
with dynamic names. This forces the attacker to invest time to dis-
assemble and analyze every individual application, and drives up
the per-target costs for the attacker.
Our approach for replacing fixed function names with dynamic

functions names requires multiple steps. First, the developer must
inline the functionality required for signature verification to the ap-
plication. Second, the application must be modified to use the in-
line signature verification code instead of that provided by the Java
framework via java.security.Signature. Third, the names of
classes andmethods comprising the signature verification codemust
be randomized on a per-application basis.

6.2 Hardening Implementation
We implemented and evaluated our approach by creating an ex-

ample application named com.example.paymenttest. For the
signature verification, we leveraged SpongyCastle2, anAndroid ver-
sion of thewell known open source Java cryptographic library Boun-
cyCastle. We implemented our approach in three steps: a) we re-
named the package org.spongycastle to com.example.payment
test, b) copied the library source files into the application’s source
directory, and c) randomized the imports in the application’s source
to reflect the renaming of the SpongyCastle package.
To implement the renaming of classes and methods, we used the

well-known obfuscation tool ProGuard. ProGuard is already deeply
integrated into the Android build process and can easily be enabled
in the application’s build configuration. However, switching on
ProGuard is not sufficient for our purposes since, by default, Pro-
Guard renames symbols in a deterministic fashion. For example,
org.example.cryptotest.crypto.digests.SHA1Digestmi-
ght always be mapped to org.example.cryptotest.b.a.b. To
address this, we implemented randomized renaming through Pro-
Guard’s ability to accept a user-provided dictionary to map input
symbols to obfuscated symbols. Therefore, instead of renaming
crypto.digests.SHA1Digest to b.a.b, we can rename it to a
randomobfuscated symbol that changeswith each application build.
The result of our compile-time obfuscation technique is that the

signature verification code now is part of the actual application,
shares the same namespace, and all known symbols are removed
from the library. We verified our method through unpacking and in-
specting a number of APKs created using these steps. We found no
common names besides the applications MainActivity class, which
serves as an application entry point specified in the applicationman-
ifest that must remain unmodified.

6.3 Discussion
We believe our approach for hardening the signature verifica-

tion code against automated attacks provides a beneficial trade-off
between developer effort and improved security. Not every appli-
2https://github.com/rtyley/spongycastle

cation developer has the resources to deploy a back-end server for
his application. Furthermore, our approach can be easily added to
existing applications with minimal effort.

7. RELATED WORK
It is well-known that strong security properties are difficult to

guarantee on remote devices controlled by untrusted and potentially
malicious users. Much work in the trusted systems domain has ex-
amined this problem [19, 17, 23]. Unfortunately, at the same time,
security systems have been built in the past that have relied solely
on client-side enforcement. For example, smart-card systems that
are widely used by European governments often rely on function-
ality provided by the operating system, and can often easily be by-
passed [20]. Our work shows that many app developers seem not to
be aware of dynamic attacks against their applications that can eas-
ily subvert in-app purchasing. We show that the current difficulty
bar for the attacker is very low, automated attacks are possible, and
that the popular protection techniques such as reflection and obfus-
cation can often easily be evaded.
To the best of our knowledge, we are the first to examine the

security of Android’s in-app billing in detail and to present a real-
world, practical attack that compromises its security. There has
been some recent work that has looked at the security of Apple’s
in-app purchasing service, however. For instance, the In-AppStore
project [26] created an attack against the Apple iOS in-app payment
system. This attack is different than ours, as it is based on redirect-
ing the device’s network traffic to the In-AppStore servers. For the
redirection, an attackers has to change the DNS settings on the iOS
device and install a custom SSL certificate. Note that the security
measures of Apple’s in-app payment architecture are not compara-
ble to Android’s in-app billing before iOS version 6 – for instance,
Apple did not digitally sign any of the purchases prior to that iOS
release.
Other work has demonstrated attacks against in-app billing [18],

but this approach is based creating an alternate Android store that
contains modified APKs. The techniques described in this work re-
quire disassembling, modifying, and re-packaging all applications.
In the process, they render about 20% of the applications non-func-
tional. Additionally, they break the APK signature which renders
the application updatemechanism provided by theGoogle Play Store
non-functional. The user must also download applications from
their store and not Google Play. As a result, their attack is far from
being executed in reality and does not pose a real threat to Google
and developers.
In contrast, our attack is fully dynamic and only takes place on

the device. We do not need to modify application APKs. Users
can install applications from the Google Play Store. Our attack can
be switched on and off on the device since it does not carry out
any permanent changes. Finally, we do not need to touch the target
application APK as it exists on device storage at all.
Our work is also related to research that has been performed on

game security. For example, previous work has investigated the
potential for cheating in games by passively monitoring application
memory in order to extract data that is helpful for the cheater [3].
Other work has looked at ways to improve the resilience of games
against cheating by building in server-side checks [15, 2]. These
works, however, are not concerned with in-app billing. In a recent
DEFCON talk, Stracener and Barnum presented ways to cheat in
YoVille, a popular game on Facebook [21]. As part of this work,
they were able to create and steal in-game items. Unlike Virtual-
Swindle, however, the presented attacks were manual and game-
specific.

Our dynamic Dalvik instrumentation approach shares similari-
ties with other work that was carried out in parallel, specifically
the Xposed [22] framework and Cydia Substrate for Android [11].
These two projects were created for device modding and require re-
placing system components such as zygote. Our approach targets
stock Android devices and does not rely on replacing core compo-
nents of the Android system. We released the source code for our
DDI implementation at http://github.com/crmulliner/ddi/.
There has also been some work that has investigated approaches

for the static instrumentation of Dalvik code. I-ARM [8] builds a
reference monitor that is statically patched into an application bi-
nary. The authors disassemble the application’s DEX classes, and
statically modify their existing behavior by adding their own classes
and replacingmethod calls to point to their newly added code. After
the modification, they have to recompile the application.
Similarly, Aurasium [24] builds a reference monitor into appli-

cation binaries. The Dalvik code is not patched, but new classes
and native code are added to ensure that the instrumentation code
is run first. Once the instrumentation code runs, functionality that
the authors are interested in (e.g., native socket accesses) can be
intercepted. Clearly, such approaches are not effective if the code
is obfuscated and protected against static analysis and disassembly.
Also, note that the package signature of the instrumented applica-
tions are broken when they are patched statically. In comparison,
our approach does not need access to source code. Our modifica-
tions are in-memory only, and thus we do not break code signing.
Furthermore, our modifications can be inserted or removed at run-
time.
DroidScope [25] presents a dynamicmalware analysis system for

Android. The system is based on an Android emulator that the au-
thors instrument in order to be able to track the execution of binary
samples. The instrumentation is lightweight and allows the authors
to produce Dalvik execution traces. In comparison, our Dalvik dy-
namic instrumentation library provides the capability to perform in-
depth instrumentation of Dalvik classes as well as the native code
of running Android applications as well as the Android system it-
self. In contrast, DroidScope only instruments the VM, while our
main focus is the instrumentation of the applications (although we
can also instrument the VM).
Recently, there have also been work that has investigated the

privacy behavior of Apple as well as Android apps. For exam-
ple, Enck et al. [10] present TaintDroid, an efficient, system-wide
dynamic taint tracking and analysis system capable of simultane-
ously trackingmultiple sources of sensitive data. Using TaintDroid,
the authors monitor the behavior of 30 popular third-party Android
applications, and discovered 68 instances of potential misuse of
users’ private information across 20 applications. Similarly, Egele
et al. [9] present PiOS, a tool for statically analyzing iOS apps for
privacy threats. PiOS uses static analysis to detect data flows in
Mach-0 binaries compiled from Objective-C code. Our work is
orthogonal to these projects, and focuses on subverting existing
functionality on an Android system to break the security of in-app
billing.

8. CONCLUSION
Android’s in-app billing service allows developers to provide

mobile apps for free, but charge users for digital services fromwithin
the apps themselves. In this paper, we present VirtualSwindle, the
first fully-automated attack against Google Play’s in-app billing ser-
vice. To the best of our knowledge, the work we present in this
paper is the first to provide an in-depth analysis of how app devel-
opers are using Android’s in-app billing service, and to measure the
robustness of these apps against automated attack.

We present an attack that is able to automatically compromise
the security of many popular Android apps. One of the goals of this
work is to raise awareness among developers, and to counter the
popular folk wisdom that following the obfuscation guidelines in
Google’s in-app billing documentation will significantly deter at-
tackers from compromising their apps. We show that this is indeed
not the case, and that dynamic attacks can be performed against
many popular apps with ease.
We performed empirical experiments and tested our attack proto-

type on 85 popular apps that make use of in-app billing. We present
detailed reports on the in-app security defenses implemented by
these apps. 60% of the apps we analyzed were automatically and
easily crackable using our attack prototype.
Based on our findings we created a lightweight countermeasure

that protects against automated attacks. Our countermeasure is easy
to adopt and improves the security of existing applications against
automated attacks such as VirtualSwindle.

Acknowledgements
This work was supported by the Office of Naval Research (ONR)
under grant N000141310102. Engin Kirda thanks Sy and Laurie
Sternberg for their generous support.

9. REFERENCES
[1] Apktool Developers. android-apktool - A tool for reverse

engineering Android apk files.
http://code.google.com/p/android-apktool/,
November 2012.

[2] Bethea, D., Cochran, R. A., and Reiter, M. K. Server-side
verification of client behavior in online games. In 17th ISOC
Network and Distributed System Security Symposium
(NDSS) (2010).

[3] Bursztein, E., Hamburg, M., Lagarenne, J., and Boneh, D.
OpenConflict: Preventing Real Time Map Hacks in Online
Games. In IEEE Symposium on Security and Privacy (May
2011).

[4] Chainfire. SuperSU.
https://play.google.com/store/apps/details?id=
eu.chainfire.supersu&hl=en, November 2012.

[5] Clowes, S. injectso - Modifying and Spying on running
processes under Linux and Solaris.
http://www.blackhat.com/presentations/bh-europ
e-01/shaun-clowes/bh-europe-01-clowes.ppt, 2001.

[6] CLShortFuse. SuperOneClick. http://forum.xda-devel
opers.com/showthread.php?t=803682, November 2012.

[7] CyanogenMod Developers. CyanogenMod.
http://www.cyanogenmod.org/, November 2012.

[8] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H.
I-ARM-Droid: A Rewriting Framework for In-App
Reference Monitors for Android Applications. InWorkshop
on Mobile Security Technologies (MoST) (May 2012).

[9] Egele, M., Kruegel, C., Kirda, E., and Vigna, G. PiOS:
Detecting Privacy Leaks in iOS Applications. In Network
and Distirbuted Systems Security Symposium (NDSS) (2
2011).

[10] Enck, W., Gilbert, P., Chun, B., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. TaintDroid: An

Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Symposium on Operating
Systems Design and Implementation (OSDI) (2010).

[11] Freeman, J. Cydia Substrate for Android.
http://www.cydiasubstrate.com/.

[12] Google. In-app Billing. http://developer.android.com
/guide/google/play/billing/, November 2012.

[13] Google. In-app Billing Security and Design.
http://developer.android.com/guide/google/play
/billing/billing_best_practices.html, November
2012.

[14] HTC. Unlock Bootloader.
http://htcdev.com/bootloader/, November 2012.

[15] Mitterhofer, S., Platzer, C., Kirda, E., and Kruegel, C.
Server-side Bot Detection in Massively Multiplayer Online
Games. IEEE Security and Privacy Magazine (5 2009).

[16] Oracle. The Reflection API. http://docs.oracle.com/j
avase/tutorial/reflect/index.html, November 2012.

[17] Petroni Jr, N., Fraser, T., Walters, A., and Arbaugh, W. An
architecture for specification-based detection of semantic
integrity violations in kernel dynamic data. In USENIX
Security Symposium (2006).

[18] Reynaud, D., Song, D., Tom Magrino, E. W., and Shin, R.
POSTER: FreeMarket: Shopping for free in Android
applications. In ISOC Network and Distributed System
Security Symposium (NDSS) (February 2012).

[19] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., and
Khosla, P. Verifying code integrity and enforcing
untampered code execution on legacy systems. In ACM
Symposium on Operating System Principles (SOSP) (2005).

[20] Spalka, A., Cremers, A., and Langweg, H. Trojan Horse
Attacks on Software for Electronic Signatures. In
Informatica (2002).

[21] T. Stracener and E. A. Smith and S. Barnum. So Many Ways
to Slap a Yo-Ho: Hacking Facebook and YoVille.
http://www.defcon.org/images/defcon-18/dc-18-p
resentations/Stracener-Smith-Barnum/DEFCON
-18-Stracener-Smith-Barnum-So-Many-Ways.pdf,
August 2010.

[22] Vollmer, R. Xposed. http://repo.xposed.info/.
[23] Watson, R. N. M. TrustedBSD: Adding Trusted Operating

System Features to FreeBSD. In USENIX Annual Technical
Conference, FREENIX Track (2001), pp. 15–28.

[24] Xu, R., Saidi, H., and Anderson, R. Aurasium: Practical
Policy Enforcement for Android Applications. In USENIX
Security Symposium (August 2012).

[25] Yan, L. K., and Yin, H. DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis. In USENIX Security
Symposium (August 2012).

[26] ZonD80. Getting started to receive your in-app for free on
iOS. http://system.in-appstore.com/, Ocrober 2012.

Appendix
Table 1 below summarizes our key findings for each of the 85 apps
that we analyzed.

http://code.google.com/p/android-apktool/
https://play.google.com/store/apps/details?id=eu.chainfire.supersu&hl=en
https://play.google.com/store/apps/details?id=eu.chainfire.supersu&hl=en
http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-clowes.ppt
http://www.blackhat.com/presentations/bh-europe-01/shaun-clowes/bh-europe-01-clowes.ppt
http://forum.xda-developers.com/showthread.php?t=803682
http://forum.xda-developers.com/showthread.php?t=803682
http://www.cyanogenmod.org/
http://www.cydiasubstrate.com/
http://developer.android.com/guide/google/play/billing/
http://developer.android.com/guide/google/play/billing/
http://developer.android.com/guide/google/play/billing/billing_best_practices.html
http://developer.android.com/guide/google/play/billing/billing_best_practices.html
http://htcdev.com/bootloader/
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html
http://www.defcon.org/images/defcon-18/dc-18-presentations/Stracener-Smith-Barnum/DEFCON-18-Stracener-Smith-Barnum-So-Many-Ways.pdf
http://www.defcon.org/images/defcon-18/dc-18-presentations/Stracener-Smith-Barnum/DEFCON-18-Stracener-Smith-Barnum-So-Many-Ways.pdf
http://www.defcon.org/images/defcon-18/dc-18-presentations/Stracener-Smith-Barnum/DEFCON-18-Stracener-Smith-Barnum-So-Many-Ways.pdf
http://repo.xposed.info/
http://system.in-appstore.com/

Name Notes

1 Angry Birds
Angry Gran Run
Bad Piggies
Big Win Slots does not verify the signature
Clouds & Sheep
Coin Dozer
Contract Kill 2
Dead Trigger
Death Dome

10 Defender II
Design My House
DH Reloaded
Drag Racing Bike Edition reflection + obfuscation
Family Feud & Friends
Flow Free
GYRO
Happy Street reflection + obfuscation
Hill Climb Racing
Infinite Monsters

20 Jaws reflection + obfuscation
Jellyflop
Jetpack Joyride
Millionaire Slots
Monster Pet Shop
My Country Online
Ninja Fishing
NinJump Deluxe
Plague Inc
Prize Claw

30 Robinson
Rule the Kingdom
Slot Machnie Delux
Slots Journey
Smurfs’ Village
Stardom
Style Me Girl
Subway Surf
Super Dynamite Fishing
Tank Hero

40 TapFish
Temple Run
The Tribez
Tiny Monsters reflection + obfuscation
Tiny Tribe
Tiny Village reflection + obfuscation
Top Stylist
Tractor Pull
TripleTown
Zombie Frontier reflection + obfuscation

50 Zombie reflection + obfuscation
Zombirds

(a) Listing of 51 popular Android apps that were successfully automatically
cracked by VirtualSwindle. An empty notes entry indicates that no security
countermeasures were present.

Name Notes

1 Arcane Empires server-side verification
BigWin Football server-side verification
Bingo Bash server-side verification
Bingo Blitz server-side verification
Bubble Mania server-side verification
Camelot server-side verification
Crime City obfuscation + reflection +

server-side verification
Crime Inc. server-side verification
DerbyDays obfuscation + server-side verification
Dragon Story server-side verification

10 Fatal Frontier server-side verification
Grab Money Slots signature check in native code
Hello Kitty Cafe server-side verification
Indestructable server-side verification
KungFu only contains the developer test item

android.test.purchased
Legned server-side verification
Life is Crime server-side verification
Little Dragons server-side verification
Live Holdem Pro obfuscation + reflection +

server-side verification
Modern War server-side verification

20 Outdoor Atlas server-side verification
(content needs to be downloaded)

PIMD server-side verification
Pumkins Vs Monsters obfuscation + reflection +

server-side verification
Pumpkin Festival server-side verification
Restaurent Story server-side verification
Slot City obfuscation + reflection +

server-side verification
Slotmania server-side verification
Slots server-side verification
SongPop Free server-side verification
Strikefleet Omega server-side verification

(blocks billing after failed attempt)

30 Stupid Zombies server-side verification
Texas Poker obfuscation + reflection +

server-side verification
TinyFarm server-side verification
Zynga Poker obfuscation + reflection +

server-side verification

(b) Listing of 34 popular Android apps that employ countermeasures against
in-app billing attacks.

Table 1: Security analysis of 85 Android apps that use in-app billing.

	Introduction
	Background: In-app Billing
	The In-App Billing Architecture
	In-App Billing: Developer's Perspective
	Purchasing an Item with In-app Billing

	Threat Model
	The Attacker
	The Prerequisites

	Attacking In-app Billing
	Dynamic Dalvik Instrumentation
	Library Injection
	Redirecting Dalvik Methods to Native Code

	Loading Arbitrary Dalvik Classes into an Existing Process
	Calling Patched Methods
	Obtaining a Context
	Using the ActivityThread
	Scraping the Instance Object

	Attacking In-App Billing
	Launching the Attack
	Interception of REQUEST_PURCHASE
	Sending IN_APP_NOTIFY
	Handling GET_PURCHASE_INFORMATION
	Confirming the purchase

	Dealing with the Play Store User Interface
	Cheating with In-Game Currency
	Making the Attack Easy to Use

	Evaluation
	Ethical Considerations
	Selection Process for In-App Billing Apps
	Attack Experiments
	Analysis of Security Countermeasures
	Locating the billing code
	Checking if Java reflection is used
	Checking for the use of dynamic strings
	Checking network traffic

	Findings and Key Insights

	Countermeasures
	Hardening the Signature Check Code
	Hardening Implementation
	Discussion

	Related Work
	Conclusion
	References

